> Forschungszentrum Jülich Jülich Supercomputing Centre (JSC) Training Course \# $\# 107 / 2017$

Introduction to descriptive and parametric statistic with R

The Thursday 9th of March 2017 from 9:00 to 16:00 in Besprechungsraum 2 (room 315), Building 16.3

Antoine Tordeux - Forschungszentrum Jülich and Wuppertal University

Introduction to descriptive and parametric statistic with R
The objectives are both to propose useful statistical methods allowing to analyze data, or to develop and calibrate models (Master level), as well as to learn how to use \mathbf{R}.

The course is organized in three sessions of two hours:

- Session 1: Introduction to statistic and R package
- Session 2: Statistic for multivariate dataset
- Session 3: Parametric statistic and statistical inference

```
Git: gitlab.version.fz-juelich.de
Download R: cran.r-project.org
```


History

The term 'Statistic' initially refers to the collection of information by states

- Etymology from the New Latin statisticum and the German words Statistik and Staatskunde (18th century)
- Counting of demographic and economic data

Statistic in the modern sense refers to the collection, analysis, modelling and interpretation of information of all types

- Statistical inference: Statistical activity associated with the probability theory
- Development of statistical models for understanding

Physic, biology, social science,
Parameter estimation and interpretation

- Development of statistical models for prediction

Engineering, social science, ...
Knowledge discovery, data mining and machine learning

Context

Data: n independent observations of characteristics (of individuals, systems...) or results of experiments
\triangle Sample is not a time series (order of the observations has no importance)
\rightsquigarrow Stochastic processes for dynamical systems

Statistic: Mathematical tools allowing to present, resume, explain or predict some data, and to develop and calibrate models

- Loose of information (data too big to individually analyze each observation)
- Focus on phenomena of interest, tendencies, global performances

Descriptive statistic: Tools describing data with no probabilist assumptions
Parametric statistic: Probabilist assumptions on the distributions of the data

Illustrative example

Representations of PDF by

Histogram: Descriptive estimation
Normal PDF: Parametric estimation

Statistical packages

Product	Description	Creation Date	Open Source	Written in Scripting	Support
MatLab mathworks.com	Platform for numerical computing	1970's		$\begin{aligned} & \text { C++, java } \\ & \text { MatLab } \end{aligned}$	Windows, Mac OS, Linux
SAS sas.com	Statistical analysis system	1974		C SAS language	Windows, Linux
$\begin{aligned} & \text { SPSS } \\ & \text { ibm.com } \end{aligned}$	Software package for statistical analysis	1968		java R, Python	Windows, Mac OS, Linux
Stata stata.com	General-purpose statistical software	1985		$\stackrel{\mathrm{C}}{\text { ado, Mata }}$	-
Statistica dell.com	Advanced analytics software package	1991		$\begin{gathered} \mathrm{C}++ \\ \mathrm{R}, \mathrm{SVB} \end{gathered}$	Windows
R r-project.org	Software environment for statistical computing	1993	\times	C, Fortran R language	Windows, Mac OS, Linux
SciLab scilab.org	Open-source alternative to MatLab	1990	\times	$\mathrm{C}, \mathrm{C}++, \text { java }$ SciLab	-
$\begin{aligned} & \text { PSPP } \\ & \text { gnu.org } \end{aligned}$	Open-source alternative to SPSS	1998	\times	C Pearl	-
$\begin{aligned} & \text { SciPy } \\ & \text { scipy.org } \end{aligned}$	Python library for scientific computing	1992	\times	C, Fortran Python	-

R software environment ${ }^{1}$

\mathbf{R} is a open source programming language and environment for statistical computing and graphics

Implementation of S language - Functional programming
Computation in R consists of sequentially evaluating statements
separated by semi-colon or new line, and that can be grouped using braces

Windows: The terminal - The script (eventual) - The plots (eventual)
Help with R: ?name_of_a_function or help(name_of_a_function)

```
# Variable, vector, operations
pi*sqrt(10)+exp(4)
2:7
seq(0,1,0.1)
x=c(1,2,3);y=c (4,5)
z=c(x,y)
z^2;log(z)
```

```
# Main control structures
x=7
if(x>0) y=0
for(i in 1:7)
    x=x+i
while(y>1)
    y=y/2
```

```
# Functions
exp(2)
? exp
exp_app=function(x,n)
    sum(x\wedgen/factorial(n))
exp_app(2,1:5)
```

[^0]\section*{| Part 1 | Descriptive statistics for univariate and bivariate data |
| :--- | :--- |}

Repartition of the data (histogram, kernel density, empirical cumulative distribution function), order statistic and quantile, statistics for location and variability, boxplot, scatter plot, covariance and correlation, QQplot

Part 2	Descriptive statistics for multivariate data

Least squares and linear and non-linear regression models, principal component analysis, principal component regression, clustering methods (K-means, hierarchical, density-based), linear discriminant analysis, bootstrap technique

Part 3	Parametric statistic

Likelihood, estimator definition and main properties (bias, convergence), punctual estimate (maximum likelihood estimation, Bayesian estimation), confidence and credible intervals, information criteria, test of hypothesis, parametric clustering

Appendix ${ }^{L} T_{E} \mathrm{E}$ plots with R and Tikz

Overview

Part 1 Descriptive statistics for univariate and bivariate data

Repartition of the data (histogram, kernel density, empirical cumulative distribution function), order statistic and quantile, statistics for location and variability, boxplot, scatter plot, covariance and correlation, QQplot

\section*{| Part 2 | Descriptive statistics for multivariate data |
| :--- | :--- |}

Least squares and linear and non-linear regression models, principal component analysis, principal component regression, clustering methods (K-means, hierarchical, density-based), linear discriminant analysis, bootstrap technique

\section*{| Part 3 | Parametric statistic |
| :--- | :--- |}

Likelihood, estimator definition and main properties (bias, convergence), punctual estimate (maximum likelihood estimation, Bayesian estimation), confidence and credible intervals, information criteria, test of hypothesis, parametric clustering

Appendix $A T T_{E} X$ plots with R and Tikz

Data used

Experiments with pedestrians on a ring
$\rightarrow \quad 11$ experiments done for different density levels

Measurement of :
Spacing
(position difference with predecessor)
Speed
(position time-difference)
Acceleration rate
(speed time-difference)

Descriptive statistics for univariate data

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Counting of the observations on a regular partition $\left(I_{j}\right)_{j}$ with window δ

$$
\forall j, x \in I_{j}, \quad \tilde{h}(x)=\sum_{i=1}^{n} \mathbb{1}_{I_{j}}\left(x_{i}\right) \quad \text { with } \quad \mathbb{1}_{I}(x)= \begin{cases}1 & \text { if } x \in I \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Normalized histogram $h(x)=\frac{1}{\delta n} \tilde{h}(x)$ is used for the estimation of the PDF

Counting of the observations on a regular partition $\left(I_{j}\right)_{j}$ with window δ

$$
\forall j, x \in I_{j}, \quad \tilde{h}(x)=\sum_{i=1}^{n} \mathbb{1}_{I_{j}}\left(x_{i}\right) \quad \text { with } \quad \mathbb{1}_{I}(x)= \begin{cases}1 & \text { if } x \in I \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Normalized histogram $h(x)=\frac{1}{\delta n} \tilde{h}(x)$ is used for the estimation of the PDF

Counting of the observations on a regular partition $\left(I_{j}\right)_{j}$ with window δ

$$
\forall j, x \in I_{j}, \quad \tilde{h}(x)=\sum_{i=1}^{n} \mathbb{1}_{I_{j}}\left(x_{i}\right) \quad \text { with } \quad \mathbb{1}_{I}(x)= \begin{cases}1 & \text { if } x \in I \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Normalized histogram $h(x)=\frac{1}{\delta n} \tilde{h}(x)$ is used for the estimation of the PDF

Counting of the observations on a regular partition $\left(I_{j}\right)_{j}$ with window δ

$$
\forall j, x \in I_{j}, \quad \tilde{h}(x)=\sum_{i=1}^{n} \mathbb{1}_{I_{j}}\left(x_{i}\right) \quad \text { with } \quad \mathbb{1}_{I}(x)= \begin{cases}1 & \text { if } x \in I \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Normalized histogram $h(x)=\frac{1}{\delta n} \tilde{h}(x)$ is used for the estimation of the PDF

Kernel density - R : density (x)

Kernel continuous estimation of the PDF

$$
d(x)=\frac{1}{n b} \sum_{i=1}^{n} k\left(\left(x-x_{i}\right) / b\right) \quad \text { with } b>0 \text { the bandwidth }
$$

\rightarrow kernel $k($.$) such that \int k(x) \mathrm{d} x=1$ and $k(x)=k(-x)$

Kernel density - R: density (x)

Kernel continuous estimation of the PDF

$$
d(x)=\frac{1}{n b} \sum_{i=1}^{n} k\left(\left(x-x_{i}\right) / b\right) \quad \text { with } b>0 \text { the bandwidth }
$$

$\rightarrow \quad$ kernel $k($.$) such that \int k(x) \mathrm{d} x=1$ and $k(x)=k(-x)$

Kernel density - R: density (x)

Kernel continuous estimation of the PDF

$$
d(x)=\frac{1}{n b} \sum_{i=1}^{n} k\left(\left(x-x_{i}\right) / b\right) \quad \text { with } b>0 \text { the bandwidth }
$$

\rightarrow kernel $k($.$) such that \int k(x) \mathrm{d} x=1$ and $k(x)=k(-x)$

Kernel density - R: density (x)

Kernel continuous estimation of the PDF

$$
d(x)=\frac{1}{n b} \sum_{i=1}^{n} k\left(\left(x-x_{i}\right) / b\right) \quad \text { with } b>0 \text { the bandwidth }
$$

\rightarrow kernel $k($.$) such that \int k(x) \mathrm{d} x=1$ and $k(x)=k(-x)$

Cumulative distribution function $-\quad R$: ecdf (x)

Empirical cumulative distribution function (ECDF)

$$
D(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \leq x}, \quad \text { with } \quad \mathbb{1}_{R}= \begin{cases}1 & \text { if } R \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Does not depend on a width to calibrate

Cumulative distribution function $-\quad R$: ecdf (x)

Empirical cumulative distribution function (ECDF)

$$
D(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \leq x}, \quad \text { with } \quad \mathbb{1}_{R}= \begin{cases}1 & \text { if } R \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Does not depend on a width to calibrate

Cumulative distribution function $-\quad R$: ecdf (x)

Empirical cumulative distribution function (ECDF)

$$
D(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \leq x}, \quad \text { with } \quad \mathbb{1}_{R}= \begin{cases}1 & \text { if } R \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Does not depend on a width to calibrate

Cumulative distribution function $-\quad R$: ecdf (x)

Empirical cumulative distribution function (ECDF)

$$
D(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \leq x}, \quad \text { with } \quad \mathbb{1}_{R}= \begin{cases}1 & \text { if } R \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Does not depend on a width to calibrate

Cumulative distribution function $-\quad R$: ecdf (x)

Empirical cumulative distribution function (ECDF)

$$
D(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \leq x}, \quad \text { with } \quad \mathbb{1}_{R}= \begin{cases}1 & \text { if } R \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Does not depend on a width to calibrate

Acceleration (m/s ${ }^{2}$)

Cumulative distribution function $-\quad R$: ecdf (x)

Empirical cumulative distribution function (ECDF)

$$
D(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \leq x}, \quad \text { with } \quad \mathbb{1}_{R}= \begin{cases}1 & \text { if } R \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Does not depend on a width to calibrate

Cumulative distribution function $-\quad R$: ecdf (x)

Empirical cumulative distribution function (ECDF)

$$
D(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \leq x}, \quad \text { with } \quad \mathbb{1}_{R}= \begin{cases}1 & \text { if } R \\ 0 & \text { otherwise }\end{cases}
$$

\rightarrow Does not depend on a width to calibrate

Boxplot - R: boxplot(x)

50% of the data into the box - 50% right (resp. left) to the median
Normal distribution : $\geq 95 \%$ of the data into the whiskers
Different definitions for the whiskers exit (0.01/0.99-quantiles, minimum/ maximum, ...)

Order statistic and quantile $-\quad R: \operatorname{sort}(x)$, quantile (x, \cdot)

Univariate data:

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

$\left(i_{1}, \ldots, i_{n}\right)$ is a permutation of the ID $(1, \ldots, n)$ such that

$$
x_{i_{1}} \leq x_{i_{2}} \leq \ldots \leq x_{i_{n}}
$$

- The k-th order statistic is

$$
x^{(k)}=x_{i_{k}}, \quad k=1, \ldots, n
$$

$\rightarrow \quad k$ is the rank variable : $k-1$ observations smaller, $n-k+1$ bigger

- The α-quantile is

$$
q_{x}(\alpha)=x^{([\alpha n])}, \quad \alpha \in[0,1]
$$

$\rightarrow \alpha \%$ of the data smaller, $1-\alpha \%$ bigger

Order statistic and quantile $-\quad \mathrm{R}: \operatorname{sort}(\mathrm{x})$, quantile (x, \cdot)

Univariate data :

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

$\left(i_{1}, \ldots, i_{n}\right)$ is a permutation of the ID $(1, \ldots, n)$ such that $\quad x_{i_{1}} \leq x_{i_{2}} \leq \ldots \leq x_{i_{n}}$

- The k-th order statistic is $\quad x^{(k)}=x_{i_{k}}, \quad k=1, \ldots, n$
$\rightarrow \quad k$ is the rank variable : $k-1$ observations smaller, $n-k+1$ bigger
- The α-quantile is

$$
q_{x}(\alpha)=x^{([\alpha n])}, \quad \alpha \in[0,1]
$$

$\rightarrow \alpha \%$ of the data smaller, $1-\alpha \%$ bigger

Unique values if $x_{i_{1}}<x_{i_{2}}<\ldots<x_{i_{n}}$
Minimum and maximum values are : $\min _{i} x_{i}=q_{x}(0)=x^{(1)}, \max _{i} x_{i}=q_{x}(1)=x^{(n)}$
Statistics stable by monotone transformation f :

$$
(f(x))^{(k)}=\left\{\begin{array}{ll}
f\left(x^{(k)}\right) \\
f\left(x^{(n-1-k)}\right)
\end{array} \quad \text { and } \quad q_{f(x)}(\alpha)= \begin{cases}f\left(q_{x}(\alpha)\right) & \text { if } f \nearrow \\
f\left(q_{f x}(1-\alpha)\right) & \text { if } f \searrow\end{cases}\right.
$$

Statistic for the location $-\quad R$: mean(x), median (x)

Three main statistics for the central position of univariate data $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

- Arithmetic mean value (or mean value) $\bar{x}=\frac{1}{n} \sum_{i} x_{i} \quad \mathrm{R}: \operatorname{mean}(\mathrm{x})$
- Median (central observation) $\quad \operatorname{med}_{x}=x^{([n / 2])}=q_{x}(0.5) \quad \operatorname{median}(\mathrm{x})$
- Mode (most probable value) $\bmod _{x}=\sup _{z} \operatorname{PDF}_{x}(z) \quad \mathrm{x}[\mathrm{pdf}(\mathrm{x})==\max (\mathrm{pdf}(\mathrm{x}))]$

Statistic for the location $-\quad R:$ mean (x), median (x)

Three main statistics for the central position of univariate data $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

- Arithmetic mean value (or mean value) $\bar{x}=\frac{1}{n} \sum_{i} x_{i} \quad \mathrm{R}:$ mean (x)
- Median (central observation) $\quad \operatorname{med}_{x}=x^{([n / 2])}=q_{x}(0.5) \quad$ median(x)
- Mode (most probable value) $\bmod _{x}=\sup _{z} \operatorname{PDF}_{x}(z) \quad \mathrm{x}[\mathrm{pdf}(\mathrm{x})==\max (\mathrm{pdf}(\mathrm{x}))]$
$\bar{x}=\operatorname{med}_{x}=\bmod _{x}$ for uni-modal symmetric repartition of the data
Mean and median solution of: $\bar{x}=\arg \min _{a} \sum_{i}\left(x_{i}-a\right)^{2}$ and $m e d_{x}=\arg \min _{a} \sum_{i}\left|x_{i}-a\right|$
Mean sensible to extreme values, median or mode not (if $x_{i} \rightarrow \infty$ then $\bar{x} \rightarrow \infty$ but $\operatorname{med}_{x}, \bmod _{x} \nrightarrow \infty$)
Median and mode stable by monotone transform $\operatorname{med}_{f(x)}=f\left(\operatorname{med}_{x}\right), \bmod _{f(x)}=f\left(\bmod _{x}\right)$
But the mean is not :

$$
\begin{array}{lll}
& & \begin{array}{l}
\text { if } f \text { is concave } \\
n \\
\sum_{i} f\left(x_{i}\right) \\
\\
\\
\geq
\end{array} \quad f(\bar{x}) \\
\text { if } f \text { is affine } \\
\text { if } f \text { is convex } & \text { (Jensen inequality) }
\end{array}
$$

Other statistics for the location

Average		Example (1, 2, 3)	R
Harmonic	$\bar{x}_{H}=\left(\frac{1}{n} \sum_{i} 1 / x_{i}\right)^{-1}$	1.64	1/mean(1/x)
Geometric	$\bar{x}_{G}=\sqrt[n]{-1}{ }_{\Pi_{i} x_{i}}$	1.82	$\operatorname{prod}(\mathrm{x}) \wedge\{1 /$ length $(\mathrm{x})\}$
Arithmetic	$\bar{x}_{A}=\frac{1}{n} \sum_{i} x_{i}$	2	mean (x)
Quadratic	$\bar{x}_{Q}=\sqrt{\frac{1}{n} \sum_{i} x_{i}^{2}}$	2.16	sqrt(mean ($\mathrm{x} \wedge 2)$)
Temporal	$\bar{x}_{T}=\sum_{i} x_{i}^{2} / \sum_{i} x_{i}$	2.3	mean ($\mathrm{x} \wedge 2) /$ mean (x)
If $x_{i}>0$	for all i, then we have ${ }^{2}$:	$\bar{x}_{H} \leq \bar{x}^{\prime}$	$\leq \bar{x}_{A} \leq \bar{x}_{Q} \leq \bar{x}_{T}$

[^1]
Example

Scattering statistics $-\quad \mathrm{R}: \operatorname{var}(\mathrm{x}), \operatorname{sqrt}(\operatorname{var}(\mathrm{x})), \ldots$

Main statistics used to measure the variability of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

- Variance $\quad \operatorname{var}_{x}=\frac{1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$
- Standard-deviation $s_{x}=\sqrt{v a r_{x}}$
- Mean absolute error $\quad a b s \operatorname{dev}_{x}=\frac{1}{n} \sum_{i}\left|x_{i}-\bar{x}\right| \quad \quad$ mean $(\operatorname{abs}(\mathrm{x}-\mathrm{mean}(\mathrm{x})))$
- Inter-quartile range $I Q R_{x}=q_{x}(0.75)-q_{x}(0.25) \quad$ quantile $(x, .75)$-quantile $(\mathrm{x}, .25)$
- Max-min difference $\quad \max \min _{x}=\max _{i} x_{i}-\min _{i} x_{i} \quad \max (\mathrm{x})-\min (\mathrm{x})$

Scattering statistics $-\quad \mathrm{R}: \operatorname{var}(\mathrm{x}), \operatorname{sqrt}(\operatorname{var}(\mathrm{x})), \ldots$

Main statistics used to measure the variability of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

- Variance $\quad \operatorname{var}_{x}=\frac{1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$
- Standard-deviation $s_{x}=\sqrt{\text { var }_{x}}$
$\operatorname{sqrt}(\operatorname{var}(x))$
- Mean absolute error $\quad a b s \operatorname{dev}_{x}=\frac{1}{n} \sum_{i}\left|x_{i}-\bar{x}\right|$
mean (abs ($x-\operatorname{mean}(x))$)
- Inter-quartile range $I Q R_{x}=q_{x}(0.75)-q_{x}(0.25) \quad$ quantile($\left.\mathrm{x}, .75\right)$-quantile $(\mathrm{x}, .25)$
- Max-min difference $\quad \max \min _{x}=\max _{i} x_{i}-\min _{i} x_{i} \quad \max (\mathrm{x})-\min (\mathrm{x})$

All these statistics are positive and all the units are the one of the $\left(x_{i}\right)$, excepted the variance
We have $s_{x} \geq a b s \operatorname{dev}_{x}$ and $\max _{i} x_{i}-\min _{i} x_{i} \geq I Q R_{x}$
Statistics stable by affine transformation
$s_{a x+b}=|a| s_{x}$,
$a b s \operatorname{dev}_{a x+b}=|a| a b s d e v_{x}$,
$I Q R_{a x+b}=|a| I Q R_{x}$,
$\max \min _{a x+b}=|a| \max \min _{x}$,

$$
\operatorname{var}_{a x+b}=a^{2} \operatorname{var}_{x}
$$

Other statistics for the shape of a distribution

The Skewness quantifies the symmetry of the distribution

$$
S_{x}=\frac{1}{n s_{x}^{3}} \sum_{i}\left(x_{i}-\bar{x}\right)^{3}
$$

- $S<0$: Left asymmetry
- $S=0$: Symmetric distribution
- $S>0$: Right asymmetry

R: skewness(x)

Large left tail
Similar left and right tails
Large right tail

Other statistics for the shape of a distribution

The Skewness quantifies the symmetry of the distribution

$$
S_{x}=\frac{1}{n s_{x}^{3}} \sum_{i}\left(x_{i}-\bar{x}\right)^{3}
$$

- $S<0$: Left asymmetry
- $S=0$: Symmetric distribution
- $S>0$: Right asymmetry

R: skewness (x)

> Large left tail

Similar left and right tails
Large right tail

The Kurtosis quantifies whether a distribution is straight or concentrated

$$
K_{x}=\frac{1}{n s_{x}^{4}} \sum_{i}\left(x_{i}-\bar{x}\right)^{4}
$$

- $K<0$: Tailness distribution
- $K>0$: Distribution with tails

R: kurtosis(x)

Straight distribution
Concentrated distribution

Statistics for the shape of a distribution : Summary

Skewness

Variance

Kurtosis

Descriptive statistics for bivariate data

$$
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in \mathbb{R}^{2 n}
$$

Scatter plot - R: plot (x, y), plot(db)

Scatter plot: The plot of bivariate data

Covariance and correlation $-\mathrm{R}: \operatorname{cov}(\mathrm{x}, \mathrm{y}), \operatorname{cor}(\mathrm{x}, \mathrm{y})$

One considers $(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ some bivariate data

- The covariance covar quantifies how two variables fluctuate together

$$
\operatorname{covar}_{x, y}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \in \mathbb{R}
$$

- The correlation cor (or linear or Pearson correlation coefficient) quantifies how two variables linearly fluctuate together

$$
\operatorname{cor}_{x, y}=\frac{\operatorname{covar}_{x, y}}{\sqrt{\text { var }_{x} \text { var }_{y}}} \in[-1,1]
$$

Covariance and correlation $-\mathrm{R}: \operatorname{cov}(\mathrm{x}, \mathrm{y}), \operatorname{cor}(\mathrm{x}, \mathrm{y})$

One considers $(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ some bivariate data

- The covariance covar quantifies how two variables fluctuate together

$$
\operatorname{covar}_{x, y}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \in \mathbb{R}
$$

- The correlation cor (or linear or Pearson correlation coefficient) quantifies how two variables linearly fluctuate together

$$
\operatorname{cor}_{x, y}=\frac{\operatorname{covar}_{x, y}}{\sqrt{\text { var }_{x} \text { var }_{y}}} \in[-1,1]
$$

Covariance and correlation tend to zero as $n \rightarrow \infty$ if x and y are independent
The correlation $\operatorname{cor}_{x, y}=|1|$ if and only if x and y are linked by an affine relation
Symmetric, covar ${ }_{x, x}=\operatorname{var}_{x}, \operatorname{covar}_{a x+b, c y+d}=a c \operatorname{covar}_{x, y}, \operatorname{cor}_{a x+b, c y+d}= \pm \operatorname{cor}_{x, y}$

Correlation: Illustrative example

$$
y_{i}=\left(x_{i}+\sigma z_{i}\right)\left(1+\sigma^{2}\right)^{-1 / 2}
$$

$\operatorname{cor}_{x, y} \rightarrow\left(1+\sigma^{2}\right)^{-1 / 2}$ as $n \rightarrow \infty$

Spearman correlation coefficient $-\mathrm{R}: \operatorname{cor}(\mathrm{x}, \mathrm{y}$, method='spearman')

Pearson correlation coefficient allows to assess linear relationships
\rightarrow The Spearman correlation coefficient extends the assessment to monotonic relationships
We denote by $\left(r g_{x}\right)$ and $\left(r g_{y}\right)$ the ranks of the variables $(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$

- The Spearman correlation coefficient is

$$
\operatorname{cor}_{x, y}^{s}=\operatorname{cor}_{r_{x}, r_{y}}=\frac{\operatorname{covar}_{r_{x}, r_{y}}}{\sqrt{\operatorname{var}_{r_{x}} \operatorname{var}_{r_{y}}}} \in[-1,1]
$$

Spearman correlation coefficient $-\mathrm{R}: \operatorname{cor}(\mathrm{x}, \mathrm{y}$, method='spearman')

Pearson correlation coefficient allows to assess linear relationships
\rightarrow The Spearman correlation coefficient extends the assessment to monotonic relationships
We denote by $\left(r g_{x}\right)$ and $\left(r g_{y}\right)$ the ranks of the variables $(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$

- The Spearman correlation coefficient is

$$
\operatorname{cor}_{x, y}^{s}=\operatorname{cor}_{r_{x}, r_{y}}=\frac{\operatorname{covar}_{r_{x}, r_{y}}}{\sqrt{\operatorname{var}_{r_{x}} \operatorname{var}_{r_{y}}}} \in[-1,1]
$$

Stable by any monotonic transformation of the data
Insensitive to extreme values
$\operatorname{cor}_{x, y}^{s}=\frac{6 \sum_{i} d_{i}^{2}}{n\left(n^{2}-1\right)}$ with $d_{i}=r_{x_{i}}-r_{y_{i}}$
if all n ranks are distinct integers

Correlation : Remark 1 - Low correlation \nRightarrow independent variables!

Extreme values annihilate Pearson correlation

If $y_{i}=x_{i} \forall i \neq i^{\prime}$ and $y_{i^{\prime}}=\gamma$, then $\operatorname{covar}_{x, y} \rightarrow 0$ as $\gamma \rightarrow \pm \infty$

$$
\operatorname{cor}_{x, y}=0.15 / 0.63
$$

\triangle Symmetric non-linear relations can have correlations nil

see also Wikipedia: Correlation

Correlation: Remark 2 - Correlation is not causality!

Simple cause/consequence relationships have high correlation coefficients
However, high correlation coefficient \nRightarrow Cause/consequence relationship
\rightarrow Both variables can be the consequence of the same cause without being linked, or can have just by chance similar trends

Correlation: Remark 2 - Correlation is not causality!

Simple cause/consequence relationships have high correlation coefficients

However, high correlation coefficient \nRightarrow Cause/consequence relationship

\rightarrow Both variables can be the consequence of the same cause without being linked, or can have just by chance similar trends

Illustrative examples

1. Researchers initially believed that electrical towers impact the health because life expectation and living distance to electrical towers are significantly negatively correlated
\rightsquigarrow Further analysis shown that this due to the fact that people living around electrical towers are generally poor, with fewer access to healthcare
2. Shadoks scientist found significant correlations between the number of times someone eats his birthday cake and having a long life ...
\rightsquigarrow He deduced that eating his birthday cake is very healthy!

Some useful properties

Mean value

- Mean of a sum is the sum of the means

$$
\overline{x+y}=\bar{x}+\bar{y}
$$

- Stable for the product if the variables are linearly independent

$$
\overline{x y}=\bar{x} \bar{y}, \text { if } x \text { and } y \text { ind. }
$$

Some useful properties

Mean value

- Mean of a sum is the sum of the means

$$
\overline{x+y}=\bar{x}+\bar{y}
$$

- Stable for the product if the variables are linearly independent $\overline{x y}=\bar{x} \bar{y}$, if x and y ind.

Variance and covariance

- Variance stable by sum when the variables are linearly independent In general

$$
\operatorname{var}(x+y)=\operatorname{var}(x)+\operatorname{var}(y)+2 \operatorname{covar}(x, y)
$$

- Variance of a product is always bigger than the product of the variances
- In general

$$
\operatorname{var}(x)=\overline{x^{2}}-\bar{x}^{2} \quad \text { and } \quad \operatorname{covar}(x, y)=\overline{x y}-\bar{x} \bar{y}
$$

QQplot - R: qqplot (x, y)

Correlations quantify existence of linear or monotonic relationship
More generally, QQplots (quantile/quantile plots) allow to qualitatively compare two distributions

QQplot - R: qqplot (x,y)

Correlations quantify existence of linear or monotonic relationship
More generally, QQplots (quantile/quantile plots) allow to qualitatively compare two distributions

- Variables linked by an affine relationship if the curve is a straight line
- Distributions are the same if the curve is $x \mapsto x$
- Different distributions in the other cases

QQplot

QQplot - R: qqplot (x,y)

Correlations quantify existence of linear or monotonic relationship
More generally, QQplots (quantile/quantile plots) allow to qualitatively compare two distributions

- Variables linked by an affine relationship if the curve is a straight line
- Distributions are the same if the curve is $x \mapsto x$
- Different distributions in the other cases

QQplot

QQplot - R: qqplot (x,y)

Correlations quantify existence of linear or monotonic relationship
More generally, QQplots (quantile/quantile plots) allow to qualitatively compare two distributions

- Variables linked by an affine relationship if the curve is a straight line
- Distributions are the same if the curve is $x \mapsto x$
- Different distributions in the other cases

QQplot - R: qqplot (x,y)

Correlations quantify existence of linear or monotonic relationship
More generally, QQplots (quantile/quantile plots) allow to qualitatively compare two distributions

- Variables linked by an affine relationship if the curve is a straight line
- Distributions are the same if the curve is $x \mapsto x$
- Different distributions in the other cases

QQplot

Summary with R

```
Univariate data
# Histogram
hist(x)
# Kernel density
density(x)
# Cumulative distribution function
ecdf(x)
# Quantile, order statistic
quantile(x,0.5);sort(x)
# Mean value, Median
mean(x);median(x)
# Variance, standard deviation
var(x);sqrt(var(x))
# Boxplot
boxplot(x)
```


Bivariate data

\#Scatter plot
plot (x, y)
\# Covariance
$\operatorname{cov}(\mathrm{x}, \mathrm{y})$
\# Correlation
$\operatorname{cor}(\mathrm{x}, \mathrm{y})$
\# QQplot
qqplot (y, x)

Overview

```
Part 1 
Repartition of the data (histogram, kernel density, empirical cumulative distribution function),
order statistic and quantile, statistics for location and variability, boxplot, scatter plot,
covariance and correlation, QQplot
```


Part 2 Descriptive statistics for multivariate data

Least squares and linear and non-linear regression models, principal component analysis, principal component regression, clustering methods (K-means, hierarchical, density-based), linear discriminant analysis, bootstrap technique

Part 3	Parametric statistic

Likelihood, estimator definition and main properties (bias, convergence), punctual estimate (maximum likelihood estimation, Bayesian estimation), confidence and credible intervals, information criteria, test of hypothesis, parametric clustering

Appendix $A T_{E} X$ plots with R and Tikz
— Part 2. Descriptive statistics for multivariate data
—Regression models

Regression models

Introduction

Multivariate data

$$
\left(y_{i}, x_{i}^{1}, \ldots, x_{i}^{p}\right), i=1, \ldots, n
$$

- n observations of $p+1$ characteristics

```
y is the variable to explain (output or regressant)
x 1},\ldots,\mp@subsup{x}{}{p}\mathrm{ are the p explanatory variables (inputs or regressors)
```

Continuous
Discrete or continuous

Introduction

Multivariate data

$$
\left(y_{i}, x_{i}^{1}, \ldots, x_{i}^{p}\right), i=1, \ldots, n
$$

- n observations of $p+1$ characteristics
y is the variable to explain (output or regressant)
Continuous
x^{1}, \ldots, x^{p} are the p explanatory variables (inputs or regressors)
Discrete or continuous

Model $M_{\alpha}: \mathbb{R}^{p} \mapsto \mathbb{R}$ for y as a function of the $\left(x^{1}, \ldots, x^{p}\right)$

$$
y=M_{\alpha}\left(x^{1}, \ldots, x^{p}\right)+\sigma \mathcal{E}
$$

- α are the parameters and $\sigma \mathcal{E}$ is a noise (or an error) with amplitude σ (unexplained part)

Example: Multiple linear model

$$
M_{\alpha}\left(x^{1}, \ldots, x^{p}\right)=\alpha_{0}+\alpha_{1} x^{1}+\ldots+\alpha_{p} x^{p}
$$

$\rightarrow \quad p+2$ parameters: $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p}\right)$ and $\sigma-$ Simple linear regression for $p=1$

Estimation of the parameters by least squares

Non-parametric estimation of the parameters by least squares (or ordinary least squares (OLS), or regression model)

$$
\tilde{\alpha}=\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-M_{\alpha}\left(x_{i}^{1}, \ldots, x_{i}^{j}\right)\right)^{2}
$$

Estimation of the parameters by least squares

Non-parametric estimation of the parameters by least squares
(or ordinary least squares (OLS), or regression model)

$$
\tilde{\alpha}=\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-M_{\alpha}\left(x_{i}^{1}, \ldots, x_{i}^{j}\right)\right)^{2}
$$

The residuals are the quantities

$$
R_{\alpha}\left(y, x^{1}, \ldots, x^{p}\right)=y-M_{\alpha}\left(x^{1}, \ldots, x^{p}\right)
$$

- OLS : Minimisation of the variance of the residuals / Sensible to extreme values
- Estimation of the amplitude of the noise using the empirical residual variance

$$
\tilde{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} R_{\tilde{\alpha}}^{2}\left(y_{i}, x_{i}^{1}, \ldots, x_{i}^{p}\right)
$$

Estimation of the parameters by least squares

Goodness of the fit

Evaluation of the goodness through the repartition of the variability

- $S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
- $S S M=\sum_{i=1}^{n}\left(\bar{M}-M_{\tilde{\alpha}}\left(x_{i}\right)\right)^{2}$
- $S S R=\sum_{i=1}^{n}\left(y_{i}-M_{\tilde{\alpha}}\left(x_{i}\right)\right)^{2}$
Total Sum of Squares
Sum of Squares of the Model
Sum of Squared Residuals

Residuals centred and linearly independent: $\quad S S T=S S M+S S R$
\rightarrow Minimizing the variance of residuals maximizes variance explained by the model

Goodness of the fit

Evaluation of the goodness through the repartition of the variability

- $S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
- $S S M=\sum_{i=1}^{n}\left(\bar{M}-M_{\tilde{\alpha}}\left(x_{i}\right)\right)^{2}$
- $S S R=\sum_{i=1}^{n}\left(y_{i}-M_{\tilde{\alpha}}\left(x_{i}\right)\right)^{2}$

Total Sum of Squares
Sum of Squares of the Model
Sum of Squared Residuals

Residuals centred and linearly independent:

$$
S S T=S S M+S S R
$$

\rightarrow Minimizing the variance of residuals maximizes variance explained by the model

Coefficient of determination

Explained proportion of the variance

$$
R^{2}=\frac{S S M}{S S T}=1-\frac{S S R}{S S T} \leq 1
$$

\rightarrow Good fit if $R^{2} \approx 1$ - OLS estimation maximizes the $R^{2}-$ If $p=1$ then $R^{2}=c o r_{x, y}^{2}$

R^{2} : Example

Linear regression - $\mathrm{R}: \operatorname{lm}(\mathrm{y} \backsim \mathrm{x})$

Matrix notations of the multiple linear model :

$$
y=X \alpha, \quad \left\lvert\, \begin{array}{ll}
y=\left(y_{1}, \ldots, y_{n}\right)^{t} \\
X=\left(1_{n}, x^{1}, \ldots, x^{p}\right) \\
\alpha=\left(\alpha_{0}, \ldots, \alpha_{p}\right)^{t}
\end{array}\right.
$$

the variable to explain the matrix of the regressors the parameters

Matrix notations of the multiple linear model:

$$
y=X \alpha, \quad \left\lvert\, \begin{array}{lll}
y=\left(y_{1}, \ldots, y_{n}\right)^{t} & \text { the variable to explain } \\
X=\left(1_{n}, x^{1}, \ldots, x^{p}\right) & \text { the matrix of the regressors } \\
\alpha=\left(\alpha_{0}, \ldots, \alpha_{p}\right)^{t} & \text { the parameters }
\end{array}\right.
$$

OLS estimation of the parameters α : $\quad \tilde{\alpha}=\left(X^{t} X\right)^{-1} X^{t} y$
Formal proof: $\forall j=1, \ldots, p, \frac{\partial}{\partial \tilde{\alpha}_{j}} \sum_{i}\left(y_{i}-\tilde{\alpha}_{0}-\tilde{\alpha}_{1} x_{i}^{1}-\ldots-\tilde{\alpha}_{p} x_{i}^{p}\right)^{2}=0$
$\Leftrightarrow \quad \forall j=1, \ldots, p, \sum_{i} x_{i}^{j}\left(y_{i}-\tilde{\alpha}_{0}-\tilde{\alpha}_{1} x_{i}^{1}-\ldots-\tilde{\alpha}_{p} x_{i}^{p}\right)=0$
$\Leftrightarrow \quad X^{t}(y-X \tilde{\alpha})=0 \quad \Leftrightarrow \quad \tilde{\alpha}=\left(X^{t} X\right)^{-1} X^{t} y$
Generalized Least Squares (GLS) estimation

$$
\tilde{\alpha}^{G}=\left(X^{t} \Omega^{-1} X\right)^{-1} X^{t} \Omega^{-1} y
$$

\rightarrow Variance/Covariance matrix Ω for the residuals

Simple linear regression

Bivariate data

$$
(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in \mathbb{R}^{2}
$$

The linear regression of y on x is the straight line

$$
y=a_{\mathrm{OLS}} x+b_{\mathrm{OLS}}
$$

$$
\left(a_{\mathrm{OLS}}, b_{\mathrm{OLS}}\right)=\arg \min _{a, b} \sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2} \Rightarrow \begin{cases}a_{\mathrm{OLS}} & =\frac{\operatorname{covar}_{x, y}}{v^{2} r_{x}} \\ b_{\mathrm{OLS}} & =\bar{y}-a_{\mathrm{OLS}} \bar{x}\end{cases}
$$

Formal proof: We denote as $F(a, b)=\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}$
$\partial F / \partial a=0$ and $\partial F / \partial b=0$ is $\left\{\begin{array}{lll}\sum_{i}\left(-x_{i} y_{i}+x_{i} b+x_{i}^{2} a\right) & =0 \\ \sum_{i}\left(y_{i}+x_{i} a+b\right) & =0\end{array}\right.$
This gives $a=\frac{\frac{1}{n} \sum_{i} x_{i} y i-\frac{1}{n} \sum_{i} x_{i} \frac{1}{n} \sum_{i} y_{i}}{\frac{1}{n} \sum_{i} x_{i}^{2}-\left(\frac{1}{n} \sum_{i} x_{i}\right)^{2}}=\frac{\operatorname{cov}_{x, y}}{\operatorname{var}_{x}}$ and $b=\frac{1}{n} \sum_{i} y_{i}+a x_{i}=\bar{y}-a \bar{x}$
\rightarrow Regressions y / x and x / y are not the same as soon as $\operatorname{var}_{x} \neq \operatorname{var}_{y}$ but both cross $\left(\bar{x}_{n}, \bar{y}_{n}\right)$

Linear and non-linear regression

Non-linear regression by invertible (monotone) non-linear transformation of the data

- Linear regression with the variables x and $f(y), f(x)$ and y or $f(x)$ and $f(y)$
Example: Exponential model

$$
M_{\alpha}=e^{\alpha_{0}} \cdot\left(x^{1}\right)^{\alpha_{1}} \ldots\left(x^{p}\right)^{\alpha_{p}}
$$

\rightarrow Linear model with $\tilde{x}=\log (x)$ and $\tilde{y}=\log (y)$

Linear and non-linear regression

Non-linear regression by invertible (monotone) non-linear transformation of the data

- Linear regression with the variables x and $f(y), f(x)$ and y or $f(x)$ and $f(y)$

$$
\text { Example: } \quad \text { Exponential model } \quad M_{\alpha}=e^{\alpha_{0}} \cdot\left(x^{1}\right)^{\alpha_{1}} \ldots\left(x^{p}\right)^{\alpha} p
$$

\rightarrow Linear model with $\tilde{x}=\log (x)$ and $\tilde{y}=\log (y)$

$$
y=a x+b
$$

GDP by inhabitant

Linear and non-linear regression

Non-invertible model : Linearisation of the problem and numerical solution

- Iterative algorithms based on the partial derivatives of the model (Jacobian matrix)
- R : nls (model, data)

Gauss-Newton or Golub-Pereyra algorithms

- Local minima and divergence problems possible

Multiple linear and non-linear regression with R

$y, x 1, x 2$ and $x 3$ are vectors with the same size

Linear least squares estimate

$$
\operatorname{lm}(y \backsim x 1+x 2+x 3)
$$

- Linear regression of y on $\mathrm{x} 1, \mathrm{x} 2$ and x 3
- Linear model (with intercept nil): $\quad \operatorname{lm}(y \sim 0+x 1+x 2+x 3)$

Non-linear least squares estimate

$$
\operatorname{nls}(y \sim \bmod (x, p 1, p 2, p 3, \ldots))
$$

- The model must be at least derivable - Default method: Gauss-Newton
- Partial derivative can be given as input or are estimated numerically

Regression models: Summary

- Regression models allow to describe relationships between a variable to explain and explanatory factors
- Parameter estimations by least squares method (sensitivity to extreme values)
- Linear (explicit solution) and non-linear (invertible transformation or numerical approximation) models
- The variability of the variable to explain can be decomposed as
- Variability explained by the model
- Variability of the residuals (non-explained part)
\rightarrow The $R^{2} \in[0,1]$ is the proportion of variable explained by the model R^{2} allows to compare models and to evaluate the quality of the fit
- Linear and non-linear regression are very easy to implement in R
$\rightarrow \quad \operatorname{lm}(\cdot)$ and $\mathrm{nls}(\cdot)$ functions $-\operatorname{coef}(\cdot)$ to get the estimations of the coefficients

Principal Component Analysis

Introduction

Multivariate data : observations of p characteristics of n individuals

$$
X=\left[\begin{array}{cccc}
x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{p} \\
x_{2}^{1} & x_{2}^{2} & \ldots & x_{2}^{p} \\
\vdots & \vdots & & \vdots \\
x_{n}^{1} & x_{n}^{2} & \ldots & x_{n}^{p}
\end{array}\right] \in\left(\mathbb{R}^{p}\right)^{n}, \quad \left\lvert\, \begin{aligned}
& x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{p}\right), \\
& x^{j}=\left(x_{1}^{j}, \ldots, x_{n}^{j}\right)^{t}, \\
& i=1, \ldots, n \\
& j=1, \ldots, p
\end{aligned}\right.
$$

\rightarrow Variables $\left(x^{1}, \ldots, x^{p}\right)$ are correlated (inter-dependence of the characteristics)

Introduction

Multivariate data : observations of p characteristics of n individuals

$$
X=\left[\begin{array}{cccc}
x_{1}^{1} & x_{1}^{2} & \ldots & x_{1}^{p} \\
x_{2}^{1} & x_{2}^{2} & \ldots & x_{2}^{p} \\
\vdots & \vdots & & \vdots \\
x_{n}^{1} & x_{n}^{2} & \ldots & x_{n}^{p}
\end{array}\right] \in\left(\mathbb{R}^{p}\right)^{n}, \quad \left\lvert\, \begin{aligned}
& x_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{p}\right), \\
& x^{j}=\left(x_{1}^{j}, \ldots, x_{n}^{j}\right)^{t}, \\
& i=1, \ldots, n \\
& j=1, \ldots, p
\end{aligned}\right.
$$

\rightarrow Variables $\left(x^{1}, \ldots, x^{p}\right)$ are correlated (inter-dependence of the characteristics)

Specific tools for the visualisation and description of multivariate data

- Scatterplots
- Parallel plots, Andrews plot, radar charts
- Chernoff faces
- Principal component analysis

By coupling the variables $-p(p-1)$ plots
Different geometrical representations
Human face representation
Decomposition in principal components

Example

Six measurements of Swiss banknotes ($n=200$ observations, $p=6$)
\rightarrow Some are authentic, some are counterfeit

Boxplot - R: boxplot(database)

Correlation coefficients

	X^{1}	X^{2}	X^{3}	X^{4}	X^{5}	X^{6}
X^{1}	1.00	0.23	0.15	-0.19	-0.06	0.19
X^{2}	0.23	1.00	$\mathbf{0 . 7 4}$	0.41	0.36	$\mathbf{- 0 . 5 0}$
X^{3}	0.15	$\mathbf{0 . 7 4}$	1.00	$\mathbf{0 . 4 9}$	0.40	$\mathbf{- 0 . 5 2}$
X^{4}	-0.19	0.41	$\mathbf{0 . 4 9}$	1.00	0.14	$\mathbf{- 0 . 6 2}$
X^{5}	-0.06	0.36	0.40	0.14	1.00	$\mathbf{- 0 . 5 9}$
X^{6}	0.19	$\mathbf{- 0 . 5 0}$	$\mathbf{- 0 . 5 2}$	$\mathbf{- 0 . 6 2}$	$\mathbf{- 0 . 5 9}$	$\mathbf{1 . 0 0}$

- X^{2} and X^{3} are highly correlated
- X^{4} and X^{5} are highly correlated to X^{3}
- X^{6} is highly correlated to all the variables excepted X^{1}

Scatterplot $-R$: plot(database)

Scatterplot $-R$: plot(database)

Radar charts - R: radarchart(database)

Radar charts - R: radarchart(database)

Andrews plots -R : andrews(database)

Package : andrews

Andrews plots -R : andrews(database)

Package : andrews

Chernoff faces - R: faces(database)

Chernoff faces - R: faces(database)

Chernoff faces - R: faces (database)

Chernoff faces - R : faces (database)

Principal component analysis (PCA)

PCA allows to explore large multivariate data $X=\left(x_{i}^{1}, \ldots, x_{i}^{p}\right), i=1, \ldots, n$

- The variable $\left(x^{1}, \ldots, x^{p}\right)$ are dependent (otherwise individual analyse!) and continuous (PCA for categorical data : Multiple correspondence analysis)
- The dimension p is high and the visualisation of the global structure of the data is difficult
- Correlated variable bring same information and could be resumed as linear combinations (i.e. principal factors) to reduce the dimension of the database

Principal component analysis (PCA)

PCA allows to explore large multivariate data $X=\left(x_{i}^{1}, \ldots, x_{i}^{p}\right), i=1, \ldots, n$

- The variable $\left(x^{1}, \ldots, x^{p}\right)$ are dependent (otherwise individual analyse!) and continuous (PCA for categorical data : Multiple correspondence analysis)
- The dimension p is high and the visualisation of the global structure of the data is difficult
- Correlated variable bring same information and could be resumed as linear combinations (i.e. principal factors) to reduce the dimension of the database

Principle: Reduction of the dimension with uncorrelated linear combinations of $\left(x^{1}, \ldots, x^{p}\right)$ maximising the variability

- Geometric interpretation : Projection of the data in orthogonal basis maximising the variance (i.e. the information - other criteria may be used)
- The 1st component is an optimal representation of the data in one dimension, 1st and 2nd components optimal representation of the data in two dimensions, and so on

PCA : Maximisation of the variance

- Orthogonal projection

PCA : Maximisation of the variance

- Orthogonal projection
- Maximisation of the variance $\sum_{i} s_{i}^{2}$

PCA : Maximisation of the variance

- Orthogonal projection
- Maximisation of the variance $\sum_{i} s_{i}^{2}$
- $\forall i, d_{i}^{2}=o_{i}^{2}+s_{i}^{2}$ constant in any direction (distance to the center)
$\Rightarrow \sum_{i} o_{i}^{2}+\sum_{i} s_{i}^{2}=C$

PCA : Maximisation of the variance

- Orthogonal projection
- Maximisation of the variance $\sum_{i} s_{i}^{2}$
- $\forall i, d_{i}^{2}=o_{i}^{2}+s_{i}^{2}$ constant in any direction (distance to the center)
$\Rightarrow \sum_{i} o_{i}^{2}+\sum_{i} s_{i}^{2}=C$
Maximising the variance \Leftrightarrow Minimising orthogonal squared distances

PCA : Maximisation of the variance

- Orthogonal projection
- Maximisation of the variance $\sum_{i} s_{i}^{2}$
- $\forall i, d_{i}^{2}=o_{i}^{2}+s_{i}^{2}$ constant in any direction (distance to the center)
$\Rightarrow \sum_{i} o_{i}^{2}+\sum_{i} s_{i}^{2}=C$
Maximising the variance \Leftrightarrow Minimising orthogonal squared distances
- Principal component \neq linear regression

Example

$$
y_{i}=\left(x_{i}+\sigma z_{i}\right)\left(1+\sigma^{2}\right)^{-1 / 2}
$$

$a_{\text {PCA }} \rightarrow 1$ while $a_{\text {OLS }} \rightarrow\left(1+\sigma^{2}\right)^{-1 / 2}$ as $n \rightarrow \infty$

Construction of the components

Standard score transformations of the data

$$
x_{i}^{j} \rightarrow \tilde{x}_{i}^{j}=\frac{x_{i}^{j}-\bar{x}^{j}}{s_{x} j}
$$

Construction of the components

Standard score transformations of the data

$$
x_{i}^{j} \rightarrow \tilde{x}_{i}^{j}=\frac{x_{i}^{j}-\bar{x}^{j}}{s_{x} j}
$$

The total variance of the dataset is

$$
\operatorname{var}_{\tilde{X}}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p}\left(\tilde{x}_{i}^{j}\right)^{2}=\sum_{j=1}^{p} s_{\tilde{x}^{j}}^{2} \quad(=p \text { if std. score })
$$

$P_{H} \tilde{X}$ is the orthogonal projection of the data on subset H and $\tilde{X}-P_{H} \tilde{X}$ is the projection on a subset orthogonal to H, then (Pythagore)

$$
\operatorname{var}_{\tilde{X}}=\operatorname{var}_{P_{H} \tilde{X}}+\operatorname{var}_{\tilde{X}-P_{H} \tilde{X}}
$$

\rightarrow PCA : Iterative calculation of orthogonal 1D subsets maximizing the variance

Construction of the components

Iterative construction of the components $(P C 1, P C 2, \ldots, P C p)$ as linear combinations of the centred data:

- $P C 1=\tilde{X} u_{1}, u_{1}$ such that $\operatorname{var}_{P C 1}$ maximal
- $P C 2=\tilde{X} u_{2}, u_{2} \perp u_{1}$ and $v a r_{P C 2}$ maximal
- $P C 3=\tilde{X} u_{3}, u_{3} \perp\left(u_{1}, u_{2}\right)$ and $\operatorname{var}_{P C 3}$ maximal
- $P C p=\tilde{X} u_{p}, u_{p} \perp\left(u_{1}, \ldots, u_{p-1}\right)$ (unique)

Construction of the components

Iterative construction of the components $(P C 1, P C 2, \ldots, P C p)$ as linear combinations of the centred data :

- $P C 1=\tilde{X} u_{1}, u_{1}$ such that var $_{P C 1}$ maximal
- $P C 2=\tilde{X} u_{2}, u_{2} \perp u_{1}$ and $v a r_{P C 2}$ maximal
- $P C 3=\tilde{X} u_{3}, u_{3} \perp\left(u_{1}, u_{2}\right)$ and $\operatorname{var}_{P C 3}$ maximal
- $P C p=\tilde{X} u_{p}, u_{p} \perp\left(u_{1}, \ldots, u_{p-1}\right)$ (unique)

The unit vectors $\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ form an orthonormal basis of R^{p} - The last component is fixed
By construction $\operatorname{var}_{P C 1} \geq \operatorname{var}_{P C 2} \geq \ldots \geq \operatorname{var}_{P C p}$ and $\sum_{j} \operatorname{var}_{P C j}=\operatorname{var}_{X}$
The first components contain most of the variability of the data when the initial variables are correlated

Construction with multivariate data

Variance/covariance matrix of the data Γ (diagonalizable $p \times p$ real and symmetric matrix)

$$
\Gamma=\frac{1}{n} X^{t} X \quad \left\lvert\, \begin{aligned}
& \Gamma_{j, j}=\operatorname{var}_{\tilde{x}^{j}}=\frac{1}{n} \sum_{i}\left(\tilde{x}_{i}^{j}\right)^{2}, \\
& \Gamma_{j, j^{\prime}}=\operatorname{covar}_{\tilde{x}^{j}, \tilde{x}^{j^{\prime}}}=\frac{1}{n} \sum_{i} \tilde{x}_{i}^{j} \tilde{x}_{i}^{j^{\prime}},
\end{aligned} \quad \forall j\right., j^{\prime} \in\{1, \ldots, p\}
$$

Construction with multivariate data

Variance/covariance matrix of the data Γ (diagonalizable $p \times p$ real and symmetric matrix)

$$
\Gamma=\frac{1}{n} X^{t} X \quad \left\lvert\, \begin{aligned}
& \Gamma_{j, j}=\operatorname{var}_{\tilde{x}^{j}}=\frac{1}{n} \sum_{i}\left(\tilde{x}_{i}^{j}\right)^{2}, \\
& \Gamma_{j, j^{\prime}}=\operatorname{covar}_{\tilde{x}^{j}, \tilde{x}^{j^{\prime}}}=\frac{1}{n} \sum_{i} \tilde{x}_{i}^{j} \tilde{x}_{i}^{j^{\prime}}, \quad \forall j, j^{\prime} \in\{1, \ldots, p\}
\end{aligned}\right.
$$

Principal components $P C j=\tilde{X} u_{j}$ described by eigenvectors and eigenvalues of Γ
Proof $\quad \tilde{X}_{v}$ is the projection of the data X on axis subset $v \in \mathbb{R}^{p}$

$$
\begin{aligned}
\operatorname{var}_{\tilde{X}_{v}} & =\frac{1}{n} \sum_{j} \sum_{j^{\prime}} v_{j} v_{j^{\prime}} \sum_{i} \tilde{x}_{i}^{j} \tilde{x}_{i}^{j^{\prime}}=v^{t} \Gamma v \\
& =\sum_{j} \lambda_{j}\left\langle v, u_{j}\right\rangle^{2} \leq \lambda_{1} \sum_{j}\left\langle v, u_{j}\right\rangle^{2} \leq \lambda_{1}=\operatorname{var}_{P C 1}
\end{aligned}
$$

The axis v for which the variance is maximal is u_{1} (and the variance is $\operatorname{var}_{P C 1}$)
\rightarrow Then for all $v \perp u_{1}$ (i.e. $\left\langle v, u_{1}\right\rangle=0$), the axis maximizing the variance is u_{2} etc...

Construction with bivariate data

The first component $P C 1=u \tilde{x}+\sqrt{1-u^{2}} \tilde{y}$ is the straight line $y=a_{\text {PCA }} x$ with $a_{\text {PCA }}=\frac{\sqrt{1-u^{2}}}{u}$ where u is such that

$$
\begin{aligned}
& \operatorname{var}_{\mathrm{PC} 1} \propto \sum_{i}\left(u \tilde{x}_{i}+\sqrt{1-u^{2}} \tilde{y}_{i}\right)^{2} \quad \text { is maximal } \\
& a_{\mathrm{PCA}}=\frac{\operatorname{var}_{y}-\operatorname{var}_{x}+\sqrt{\left(\operatorname{var}_{y}-\operatorname{var}_{x}\right)^{2}+4 \operatorname{covar}_{x, y}^{2}}}{2 \operatorname{covar}_{x, y}}
\end{aligned}
$$

Construction with bivariate data

The first component $P C 1=u \tilde{x}+\sqrt{1-u^{2}} \tilde{y}$ is the straight line $y=a_{\text {PCA }} x$ with $a_{\text {PCA }}=\frac{\sqrt{1-u^{2}}}{u}$ where u is such that

$$
\begin{aligned}
& \operatorname{var}_{\mathrm{PC} 1} \propto \sum_{i}\left(u \tilde{x}_{i}+\sqrt{1-u^{2}} \tilde{y}_{i}\right)^{2} \quad \text { is maximal } \\
& a_{\mathrm{PCA}}=\frac{\operatorname{var}_{y}-\operatorname{var}_{x}+\sqrt{\left(\operatorname{var}_{y}-\operatorname{var}_{x}\right)^{2}+4 \operatorname{covar}_{x, y}^{2}}}{2 \operatorname{covar}_{x, y}}
\end{aligned}
$$

The slope for linear regression is $a_{0 \text { Ls }}=\frac{\text { covar }_{x, y}}{\text { var }_{x}}$
If $y_{i}=a x_{i}$ for all i, then $a_{\text {PCA }}=a_{\text {OLS }}=a$ (since covar $x_{y}=a \operatorname{var}_{x}$ and $\operatorname{var}_{y}=a^{2} \operatorname{var}_{x}$)
If $s_{x}=s_{y}$ then $a_{\mathrm{PCA}}= \pm 1$, according to the sign of $\operatorname{covar}_{x, y}$ (and $a_{\mathrm{OLS}}=\operatorname{cor}_{x, y}$)
The second component has the slope $-1 / a_{\text {PCA }}$

Properties of the components

- Maximization of the variability : $P C 1$ best representation in 1D, $(P C 1, P C 2)$ best representation in 2D, ...

Properties of the components

- Maximization of the variability : PC1 best representation in 1D, $(P C 1, P C 2)$ best representation in 2D, ...
- The principal components $(P C 1, \ldots, P C p)$ are centred:

$$
\forall j=1, \ldots, p, \quad P \bar{C} j=\frac{1}{n} \sum_{i=1}^{n} P C j_{i}=0
$$

Properties of the components

- Maximization of the variability : PC1 best representation in 1D, $(P C 1, P C 2)$ best representation in 2D, ...
- The principal components $(P C 1, \ldots, P C p)$ are centred:

$$
\forall j=1, \ldots, p, \quad P \bar{C} j=\frac{1}{n} \sum_{i=1}^{n} P C j_{i}=0
$$

- The principal components are not correlated, and with variance $\left(\lambda_{1}, \ldots, \lambda_{p}\right)$:

$$
\forall j \neq j^{\prime}, \quad \operatorname{cov}_{P C j, P C j^{\prime}}=\frac{1}{n} \sum_{i=1}^{n} P C j_{i} P C j_{i}^{\prime}=\lambda_{j} u_{j}^{t} u_{j^{\prime}}= \begin{cases}\lambda_{j} & \text { if } j=j^{\prime} \\ 0 & \text { if } j \neq j^{\prime}\end{cases}
$$

\rightarrow This does not imply that the principal components are independent
Only the linear relations are resumed: Observation of non-linear phenomena

Properties of the components

- Maximization of the variability : PC1 best representation in 1D, $(P C 1, P C 2)$ best representation in 2D, ...
- The principal components $(P C 1, \ldots, P C p)$ are centred :

$$
\forall j=1, \ldots, p, \quad P \bar{C} j=\frac{1}{n} \sum_{i=1}^{n} P C j_{i}=0
$$

- The principal components are not correlated, and with variance $\left(\lambda_{1}, \ldots, \lambda_{p}\right)$:

$$
\forall j \neq j^{\prime}, \quad \operatorname{cov}_{P C j, P C j^{\prime}}=\frac{1}{n} \sum_{i=1}^{n} P C j_{i} P C j_{i}^{\prime}=\lambda_{j} u_{j}^{t} u_{j^{\prime}}= \begin{cases}\lambda_{j} & \text { if } j=j^{\prime} \\ 0 & \text { if } j \neq j^{\prime}\end{cases}
$$

\rightarrow This does not imply that the principal components are independent
Only the linear relations are resumed: Observation of non-linear phenomena

- Interpretation of the components with the correlations to the initial variables

$$
\forall j, j^{\prime} \in\{1, \ldots, p\}, \quad \operatorname{cor}_{x j, P C j^{\prime}}=u_{j^{\prime}}^{j} \sqrt{\lambda_{j^{\prime}}} / s_{x j}
$$

Practical use of PCA

In practice, the PCA consists in :

1. Calculus of the variances of the principal components (eigenvalues) to select the number of new variables to take in consideration
\rightarrow Plot of the proportions of variance per component $\quad \tau_{j}=\lambda_{j} / \sum_{i} \lambda_{i}$

Practical use of PCA

In practice, the PCA consists in :

1. Calculus of the variances of the principal components (eigenvalues) to select the number of new variables to take in consideration
\rightarrow Plot of the proportions of variance per component $\quad \tau_{j}=\lambda_{j} / \sum_{i} \lambda_{i}$
2. Analysis of the correlations of the selected components with the initial variables to interpret the new variables
\rightarrow Circle of the correlations plot

Practical use of PCA

In practice, the PCA consists in :

1. Calculus of the variances of the principal components (eigenvalues) to select the number of new variables to take in consideration
\rightarrow Plot of the proportions of variance per component $\quad \tau_{j}=\lambda_{j} / \sum_{i} \lambda_{i}$
2. Analysis of the correlations of the selected components with the initial variables to interpret the new variables
\rightarrow Circle of the correlations plot
3. Analysis of the components (linear and non-linear phenomena)
\rightarrow Boxplot, scatter plots or clustering analysis of the new variables

Example of the notes

Six measurements for the notes

Principal components - R: prcomp(database)

Rotations

	$P C 1$	$P C 2$	$P C 3$	$P C 4$	$P C 5$	$P C 6$
X^{1}	0.04	-0.01	0.33	-0.56	-0.75	0.10
X^{2}	-0.11	-0.07	0.26	-0.46	0.35	-0.77
X^{3}	-0.14	-0.07	0.34	-0.42	0.53	0.63
X^{4}	-0.77	0.56	0.22	0.19	-0.10	-0.02
X^{5}	-0.20	-0.66	0.56	0.45	-0.10	-0.03
X^{6}	0.58	0.49	0.59	0.26	0.08	-0.05

Component variance (eigenvalues λ_{j})

	$P C 1$	$P C 2$	$P C 3$	$P C 4$	$P C 5$	$P C 6$
λ	3.00	0.94	0.24	0.19	0.09	0.04
τ	0.67	0.21	0.05	0.04	0.02	0.01

Plot of the proportions of variance per component

Selection of the component number

Variance proportion per component

Plot of the proportions of variance per component

Selection of the component number

Variance proportion per variable

Plot of the circle of the correlations

Interpretation of the components

Circle of the correlations

- PC1 Large flag / Short border - Long / not large note
- PC2 Large flag and down border / Short up border

1st component

Scatter plot of the components

Analysis of the results

Scatter plot of the two first components

1st component

Scatter plot of the components

Analysis of the results

Scatter plot of the two first components

1st component

PCA with R

Read of the data

```
data=read.table('C/...')
```

- Principal component analysis with R

No standard score transformation of the data by default $\operatorname{prcomp}(M, s c a l e=T)$ for PCA on standard scores

- Basic example:

```
pca=prcomp(data)
pca$rotations
pca$stddev
summary(pca)
```


Principal component regression

OLS estimation has interesting properties if regressors are linearly independent
\rightarrow Regression on the principal components

- Principal components:

$$
p \times n \text { matrix } \quad P C=\hat{X} S U
$$

\hat{X} is the centred data $\left(\hat{x}_{i}^{j} \rightarrow x_{i}^{j}-\bar{x}^{j}\right.$ for all i, j)
$S=\operatorname{Diag}\left(1 / s_{x^{1}}, \ldots, 1 / s_{x} p\right)$ is the diagonal $p \times p$ normalization matrix $U=\left(u_{1}, \ldots, u_{p}\right)$ is the $p \times p$ matrix of unit and orthogonal eigenvectors

- Regression on the components: $\hat{y}=\alpha_{1}^{P C} P C 1+\ldots+\alpha_{p}^{P C} P C p$

$$
\tilde{\alpha}^{P C}=\left(P C^{t} P C\right) P C^{t} y=(S U)^{-1}\left(X^{t} X\right) X^{t} y=(S U)^{-1} \tilde{\alpha}
$$

Principal component regression

OLS estimation has interesting properties if regressors are linearly independent
\rightarrow Regression on the principal components

- Principal components:

$$
p \times n \text { matrix } \quad P C=\hat{X} S U
$$

\hat{X} is the centred data $\left(\hat{x}_{i}^{j} \rightarrow x_{i}^{j}-\bar{x}^{j}\right.$ for all i, j)
$S=\operatorname{Diag}\left(1 / s_{x^{1}}, \ldots, 1 / s_{x} p\right)$ is the diagonal $p \times p$ normalization matrix
$U=\left(u_{1}, \ldots, u_{p}\right)$ is the $p \times p$ matrix of unit and orthogonal eigenvectors

- Regression on the components: $\hat{y}=\alpha_{1}^{P C} P C 1+\ldots+\alpha_{p}^{P C} P C p$

$$
\tilde{\alpha}^{P C}=\left(P C^{t} P C\right) P C^{t} y=(S U)^{-1}\left(X^{t} X\right) X^{t} y=(S U)^{-1} \tilde{\alpha}
$$

The estimation using initial parameters is $\tilde{\alpha}=S U \tilde{\alpha}^{P C}$ and $\tilde{\alpha}_{0}=\bar{y}-\frac{1}{n} \hat{X} \tilde{\alpha}$ By shorting the regressors to the first principal components the model still depends on all the initial variables

Principal component analysis: Summary

PCA is a descriptive tool allowing to reduce the dimension of multivariate data
\rightarrow Then use of tools for low dimension data (uni- or bivariate)

The principal components are

- Linear combinations of the initial variables
- Linearly independent
- Ordered by maximizing the variability

Practical use of PCA :

- Number of components used
- Interpretation of the new variables
- Analysis of the components

Proportion of variance per component
Circle of the correlations
Scatter plot of the components
— Part 2. Descriptive statistics for multivariate data -Clustering methods

Clustering methods

Introduction

Clustering : Division of heterogeneous data in subsets (clusters)
\rightarrow Observations in the same cluster are more similar (in some sense) to each other than to those in other subsets

Introduction

Clustering : Division of heterogeneous data in subsets (clusters)

\rightarrow Observations in the same cluster are more similar (in some sense) to each other than to those in other subsets

Possible distinctions

Supervised / unsupervised :	Clusters and cluster number are known / unknown
Strict clustering :	Each observation belongs to exactly one cluster
Strict clustering with outliers:	Observations can also belong to no cluster (outliers)
Overlapping clustering :	Observations may belong to more than one cluster
Fuzzy clustering:	Each observation belongs to each cluster according to a certain degree
Hierarchical clustering:	Observations of a child cluster also belong to the parent cluster
Centroid clustering:	Cluster represented by a centroid (mean value)
Density-based clustering:	Clustering based on empirical PDF estimation

K-means clustering - \quad : kmeans (database, K)

Observation $\left(x_{1}, \ldots, x_{n}\right)$, partition $S=\left\{S_{1}, \ldots, S_{K}\right\}$, mean by cluster $\left(u_{1}, \ldots, u_{K}\right)$
Unsupervised clustering method based on mean by cluster (k-medoid based on median)
\rightarrow Number of clusters K to be given
Minimization of the intra-cluster variability

$$
S=\arg \min _{S} \sum_{j=1}^{K} \sum_{i \in S_{j}}\left\|x_{i}-u_{j}\right\|^{2}
$$

K-means clustering - R : kmeans (database, K)

Observation $\left(x_{1}, \ldots, x_{n}\right)$, partition $S=\left\{S_{1}, \ldots, S_{K}\right\}$, mean by cluster $\left(u_{1}, \ldots, u_{K}\right)$
Unsupervised clustering method based on mean by cluster (k-medoid based on median)
\rightarrow Number of clusters K to be given

Minimization of the intra-cluster variability

$$
S=\arg \min _{S} \sum_{j=1}^{K} \sum_{i \in S_{j}}\left\|x_{i}-u_{j}\right\|^{2}
$$

Minimizing the intra-variability \Leftrightarrow Maximizing the inter-variability (Pythagore)
Partition based on the Voronoi diagram for the means
Calculation of the global minimum is a NP-complex problem
\rightarrow Iterative numerical algorithms (Hartigan-Wong, Lloyd-Forgy, ...) with convergence to local minima

K-means: Illustrative example with 3 clusters

Convergence to steady state in 3 steps (the step's number depends on the initial partition / mean values) In this example the reached local optimum is the global one

Agglomerative hierarchical method (AHM) — R : hclust(dist(data))

Hierarchical method: Unsupervised clustering based on tree representations

- Top of the tree: One cluster with all the observations
- Bottom of the tree : each observation is a cluster

Agglomerative hierarchical method (AHM) — R : hclust(dist(data))

Hierarchical method: Unsupervised clustering based on tree representations

- Top of the tree: One cluster with all the observations
- Bottom of the tree : each observation is a cluster

Agglomerative iterative method (bottom up approach, by opposition to divisive methods)

1. Initialization: Each observation is a cluster
2. Definition of the metric (Euclidean, Manhattan, Mahalanobis, maximum, ...)
3. Definition of a distance between two clusters - Linkage (max, min, mean, centroid, ...)
4. Repeat while Cluster_number > 1 \{Merge_two_closest_clusters\}

Dendrogram: Tree with observation in x-coordinate and distances in y-coordinate
\rightarrow Cut of the dendrogram determinates the number of clusters

AHM : Illustrative example

Observations

Cluster dendrogram

The dendrogram allows to summarize/represent the hierarchical clustering
Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)

AHM : Illustrative example

Observations

Cluster dendrogram

The dendrogram allows to summarize/represent the hierarchical clustering Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)

AHM : Illustrative example

Observations

Cluster dendrogram

The dendrogram allows to summarize/represent the hierarchical clustering
Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)

AHM : Illustrative example

Observations

Cluster dendrogram

The dendrogram allows to summarize/represent the hierarchical clustering
Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)

Mean-shift clustering - ms(database) Package LPMC

K-means and AHM based on distances to quantify the similarities
Mean-shift clustering: Gradient-method based on kernel density estimate

- Iterative method allowing to detect local maximum of the kernel density
- Method calibrated by a bandwidth (to be given)
- Clustering: threshold for local maxima (cluster number), kernel density gradient (cluster belonging)
\rightarrow See also DBSCAN or OPTICS algorithms

Mean-shift clustering - ms(database) Package LPMC

K-means and AHM based on distances to quantify the similarities

Mean-shift clustering: Gradient-method based on kernel density estimate

- Iterative method allowing to detect local maximum of the kernel density
- Method calibrated by a bandwidth (to be given)
- Clustering : threshold for local maxima (cluster number), kernel density gradient (cluster belonging)
\rightarrow See also DBSCAN or OPTICS algorithms

More flexible method than K-means or AHM, suitable for any type of clusters
Bandwidth not easy to calibrate, adaptive bandwidth often required

Illustrative examples

AHM

Mean-shift

Circular clusters: K-means, AHM and mean-shift methods give satisfying results
\rightarrow Distance between observations in each clusters smaller than distance between cluster's means

Illustrative examples

AHM

Mean-shift

Non-circular clusters : K-means not adapted / AHM and mean-shift more robust
\rightarrow Distance between observations in each clusters bigger than distance between cluster's means

Illustrative examples

AHM

Mean-shift

\triangle
Clustering methods find clusters even if there is no significant dissimilarities
\rightarrow Criteria for significance of inter/intra-variability, dendrogram branch size, bandwidth size, ...

Example of the notes

Detection of the counterfeit notes	Method		
Miss-classification error	K-means	AHM	Mean-shift
Complete sample	0.005%	0	0.005%
Two first components (PCA)	0.005%	0	0%

Clustering: Observations (continuous variables) $\quad \rightarrow \quad$ Clusters (discrete variable)
Discriminant analysis: Clusters (discrete variable) \rightarrow Observations (discriminant)

Linear discriminant analysis

- Data:

$$
\begin{array}{lr}
\text { Continuous explanatory variables (regressors) } & X^{1}, \ldots, X^{p} \\
\text { Discrete variable to explain (clusters) } & Y=1, \ldots, K
\end{array}
$$

- Discriminant variable D as linear combination of the regressors minimizing the variance by cluster $Y=1, \ldots, K$:

$$
\begin{aligned}
& D\left(\alpha_{0}, \ldots, \alpha_{p}\right)=\alpha_{0}+\alpha_{1} X^{1}+\ldots+\alpha_{p} X^{p} \\
& \text { with }\left(\alpha_{0}, \ldots, \alpha_{p}\right)=\arg \min _{\alpha} \sum_{j=1}^{K} \sum_{Y_{i}=j}\left(D_{i}-\bar{D}_{j}\right)^{2}
\end{aligned}
$$

Clustering: Observations (continuous variables) $\quad \rightarrow \quad$ Clusters (discrete variable)
Discriminant analysis: Clusters (discrete variable) \rightarrow Observations (discriminant)

Linear discriminant analysis

- Data:

Continuous explanatory variables (regressors)	X^{1}, \ldots, X^{p}
Discrete variable to explain (clusters)	$Y=1, \ldots, K$

- Discriminant variable D as linear combination of the regressors minimizing the variance by cluster $Y=1, \ldots, K$:

$$
\begin{aligned}
& D\left(\alpha_{0}, \ldots, \alpha_{p}\right)=\alpha_{0}+\alpha_{1} X^{1}+\ldots+\alpha_{p} X^{p} \\
& \text { with }\left(\alpha_{0}, \ldots, \alpha_{p}\right)=\arg \min _{\alpha} \sum_{j=1}^{K} \sum_{Y_{i}=j}\left(D_{i}-\bar{D}_{j}\right)^{2}
\end{aligned}
$$

The discriminant D in the linear combination of the $\left(X^{j}\right)$ minimizing the intra-variability Best linear combination of the regressors $\left(X^{j}\right)$ for the clustering given by Y

LDA : Example of the notes

LDA : Example of the notes

\rightarrow The linear discriminant and the K-means only match when the given clustering in LDA is the one minimizing the intra-variability for $\alpha_{0}=0$ and $\alpha_{j}=1$ for all $j=1, \ldots, p$

Clustering and LDA with R

Clustering methods

- K-means

```
kmean(database,k)
```

with database the data (vector or matrix) and k the number of clusters

- AHM

```
hclust(dist(X))
```

- Specification of the metric dist() (see option methods)
- Specification of the linkage with option methods in hclust() function
- Cutting of the dendrogram with cutree(H, k), with H a hclust()-object and k the number of clusters
- Mean-shift

```
ms(X,h)
```

with h the bandwidth - Package LPMC to install

Linear discriminant analysis lda(X) or fda(X)
Packages MASS or MDA to install

Clustering : Summary

Clustering methods allow to partition heterogeneous data in homogeneous clusters

- Optimisation of intra/inter-variability
\rightarrow Fixed number of clusters
- Hierarchy between the observations

Hierarchical method
\rightarrow Representation with dendrogram

- \rightarrow Cluster based on empirical PDF

Mean-shift
Specification of the bandwidth

Clustering : Summary

Clustering methods allow to partition heterogeneous data in homogeneous clusters

- Optimisation of intra/inter-variability

K-means
\rightarrow Fixed number of clusters

- Hierarchy between the observations

Hierarchical method
\rightarrow Representation with dendrogram

- \rightarrow Cluster based on empirical PDF

Mean-shift Specification of the bandwidth
\triangle Significance of a clustering has to be tested: Intra/inter-variability difference, branch size of dendrogram, bandwidth size over observation number, ...

L Part 2. Descriptive statistics for multivariate data
-Bootstrap technique

Bootstrap technique

Introduction

Regression, PCA and clustering allow to define and calibrate models
\rightarrow Single (punctual) estimates of the parameters
Would the estimations be the same for another sample of observations?
In other worlds: How does the estimation depend on the specific values of the sample

Introduction

Regression, PCA and clustering allow to define and calibrate models
\rightarrow Single (punctual) estimates of the parameters
Would the estimations be the same for another sample of observations?
In other worlds: How does the estimation depend on the specific values of the sample

Bootstrap technique allows to answer these questions by

1. Resampling the observations (independent urn sampling)
2. Analysing the distribution of the estimates on the (bootstrap) subsamples

Numerical technique allowing to evaluate the precision of estimation of model parameters Approaching initially used in end of the 1970's when computer capacity became important

An illustrative example

A machine produces some components

\rightarrow Some of them are operational, some others are defective

\rightarrow Estimation the probability p that a component is defective

An illustrative example

A machine produces some components

\rightarrow Some of them are operational, some others are defective
\rightarrow Estimation the probability p that a component is defective

Two sets of observations

1. Sample 1: Among 10 observed components, two are defective
2. Sample 2: Among 100 observed components twenty two are defective
\rightarrow Respective estimates: $\quad \tilde{p}_{1}=0.2 \quad$ and $\quad \tilde{p}_{2}=0.22$

Are these estimations precise?

Bootstraping - R: sample(data, n,replace=T)

Sample $1 \quad(n=10)$

- Bootstrap Sample 1
- Bootstrap Sample 2
- Bootstrap Sample 3
- ...

Sample $2 \quad(n=100)$

- Bootstrap Sample 1
- Bootstrap Sample 2
- Bootstrap Sample 3
- ...

$$
\begin{array}{ll}
\{0,0,1,0,1,0,0,0,0,0\}, & \tilde{p}_{1}=0.2 \\
\{0,0,0,0,0,0,0,0,0,0\}, & \tilde{p}_{1}^{1}=0 \\
\{0,0,0,0,1,0,0,0,1,0\}, & \tilde{p}_{1}^{2}=0.2 \\
\{0,0,0,0,0,0,1,0,0,0\}, & \tilde{p}_{1}^{3}=0.1
\end{array}
$$

$$
\begin{array}{ll}
\{0,0,0,0, \ldots, 1,0,0,0\}, & \tilde{p}_{2}=0.22 \\
\{0,0,0,1, \ldots, 1,0,0,0\}, & \tilde{p}_{2}^{1}=0.26 \\
\{0,0,0,0, \ldots, 0,1,0,0\}, & \tilde{p}_{2}^{2}=0.25 \\
\{1,0,0,0, \ldots, 0,1,1,0\}, & \tilde{p}_{2}^{3}=0.17
\end{array}
$$

Bootstraping

Histogram of the estimations of probability p for 1 e 5 bootstrap subsamples

Sample $1 \quad(n=10)$

Sample 2 ($n=100$)

Example of the notes

1e3 bootstrap subsamples

K-means on the two first principal components

Example of the notes

1e4 bootstrap subsamples

K-means on the two first principal components

Bootstrap: Summary

- The Bootstrap method is strictly descriptive, with no assumption on the data and their distribution
- The method is purely numerical and can be computationally costly
- Bootstrap does not improve punctual estimate but give information on its variability (i.e. the precision of estimation)
- The approach can be used for any type of estimates (mean, quantil, etc...)
- Smooth bootstrap by adding noise onto each resampled observation (equivalent to sampling from a kernel density estimate of the data).
- Time series: Moving block bootstrap
- Bootstrap with random variable generator: Monte Carlo simulation

Overview

\section*{| Part 1 | Descriptive statistics for univariate and bivariate data |
| :--- | :--- |
 Repartition of the data (histogram, kernel density, empirical cumulative distribution function), order statistic and quantile, statistics for location and variability, boxplot, scatter plot, covariance and correlation, QQplot}

Part 2	Descriptive statistics for multivariate data

Least squares and linear and non-linear regression models, principal component analysis, principal component regression, clustering methods (K-means, hierarchical, density-based), linear discriminant analysis, bootstrap technique

Part 3 Parametric statistic

Likelihood, estimator definition and main properties (bias, convergence), punctual estimate (maximum likelihood estimation, Bayesian estimation), confidence and credible intervals, information criteria, test of hypothesis, parametric clustering

Appendix $A T T_{E} X$ plots with R and Tikz

The example of the dice

Are my dices biased ??

10 rolls

1000 rolls

The example of the dice

Are my dices biased ??

Yes
 Observed differences
 can not be random

The example of the machine

A machine produces some components that can be operational or defective

- Estimation of the probability p that a component is defective by mean value

$$
\tilde{p}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \text { with } \quad X_{i}= \begin{cases}0 & \text { if the component } i \text { is operational } \\ 1 & \text { if the component } i \text { is defective }\end{cases}
$$

The estimation from a sample with $\mathbf{1 0 0}$ observations is more precise than the estimation with 10 observations (cf. bootstrap)

Why? Because the variability of the mean decreases as the observation number increases

- Implicitly this reasoning supposes probabilist assumptions on the convergence of the mean, its distribution or again existence of expected values
$\rightarrow \quad$ Parametric statistic

Introduction

Fundamental assumption in parametric (or inference or mathematical) statistic:
The observations $i=1, \ldots, n$ are independent random variables with probability distribution function $P_{\theta}, \theta \in \mathbb{R}^{k}$
\rightarrow Independent and identically distributed (iid) model

- P_{θ} is general (but can have to satisfy properties) - θ are the parameters of the models
- The data are supposed to be a sample of observations of the distribution P_{θ}

Introduction

Fundamental assumption in parametric (or inference or mathematical) statistic:
The observations $i=1, \ldots, n$ are independent random variables with probability distribution function $P_{\theta}, \theta \in \mathbb{R}^{k}$
\rightarrow Independent and identically distributed (iid) model

- P_{θ} is general (but can have to satisfy properties) - θ are the parameters of the models
- The data are supposed to be a sample of observations of the distribution P_{θ}

The parametric statistic allows to:

- Fit the parameters θ of a model and evaluate the precision of estimation
- Obtain properties on usual estimators or posterior distribution (Bayesian approach)
- Testing modelling assumptions and compare models

Example 1

Assumption : Normal distribution $\quad \mathcal{N}\left(\mu, \sigma^{2}\right) \quad f(x)=e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \sqrt{2 \pi \sigma^{2}}-1$
$\rightarrow \quad$ Estimation of μ and σ by $\tilde{\mu}_{n}=\bar{x}$ and $\tilde{\sigma}_{n}=s_{x}$

Example 1

Assumption: Normal distribution $\quad \mathcal{N}\left(\mu, \sigma^{2}\right) \quad f(x)=e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \sqrt{2 \pi \sigma^{2}-1}$
\rightarrow Estimation of μ and σ by $\tilde{\mu}_{n}=\bar{x}$ and $\tilde{\sigma}_{n}=s_{x}$

Example 1

Assumption: Normal distribution $\quad \mathcal{N}\left(\mu, \sigma^{2}\right) \quad f(x)=e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \sqrt{2 \pi \sigma^{2}}-1$
$\rightarrow \quad$ Estimation of μ and σ by $\tilde{\mu}_{n}=\bar{x}$ and $\tilde{\sigma}_{n}=s_{x}$

Example 2

Assumption: Exponential distribution $\mathcal{E}(\lambda)$ $f(x)=\lambda e^{-\lambda x}$
\rightarrow Estimation of expected value λ by $\tilde{\lambda}_{n}=\bar{x}$

Example 2

Assumption: Gamma distribution

$$
\mathcal{G}(k, \alpha)
$$

$$
f(x)=\frac{x^{k-1} e^{-x / \alpha}}{\Gamma(k) \alpha^{k}}
$$

\rightarrow Estimation of k and α by $\tilde{k}_{n}=\bar{x}^{2} / \operatorname{var}_{x}$ and $\tilde{\alpha}_{n}=\operatorname{var}_{x} / \bar{x}$

Convergence of random variables

- Convergence in distribution

A sequence X_{1}, X_{2}, \ldots of real-valued random variables is said to converge in distribution, or converge weakly, or converge in law to a random variable X if

$$
D_{n}(x) \rightarrow D(x) \text { as } \quad n \rightarrow \infty \quad \text { for all } x \in \mathbb{R} \text { at which } F \text { is continuous }
$$

Here D_{n} and D are the cumulative distribution functions of X_{n} and X, respectively.

Convergence of random variables

- Convergence in distribution

A sequence X_{1}, X_{2}, \ldots of real-valued random variables is said to converge in distribution, or converge weakly, or converge in law to a random variable X if

$$
D_{n}(x) \rightarrow D(x) \text { as } \quad n \rightarrow \infty \quad \text { for all } x \in \mathbb{R} \text { at which } F \text { is continuous }
$$

Here D_{n} and D are the cumulative distribution functions of X_{n} and X, respectively.

- Convergence in probability denoted P
X_{1}, X_{2}, \ldots converges in probability towards the random variable X if for all $\varepsilon>0$

$$
P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Convergence of random variables

- Convergence in distribution

A sequence X_{1}, X_{2}, \ldots of real-valued random variables is said to converge in distribution, or converge weakly, or converge in law to a random variable X if

$$
D_{n}(x) \rightarrow D(x) \text { as } n \rightarrow \infty \quad \text { for all } x \in \mathbb{R} \text { at which } F \text { is continuous }
$$

Here D_{n} and D are the cumulative distribution functions of X_{n} and X, respectively.

- Convergence in probability denoted P
X_{1}, X_{2}, \ldots converges in probability towards the random variable X if for all $\varepsilon>0$

$$
P\left(\left|X_{n}-X\right| \geq \varepsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

- Almost sure convergence
X_{1}, X_{2}, \ldots converges almost surely, or almost everywhere, or with probability $\mathbf{1}$, or strongly towards X if

$$
P\left(X_{n} \rightarrow X \text { as } n \rightarrow \infty\right)=1
$$

Main theorems

Law of large number (LLN)

$\left(X_{1}, \ldots, X_{n}\right)$ is a iid sample with expected value $E\left(X_{i}\right)=\mu<\infty$. Then

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{\text { a.s. }} E\left(X_{i}\right)=\mu \quad \text { as } \quad n \rightarrow \infty
$$

\rightarrow Mean value converges to expected value

Main theorems

Law of large number (LLN)

$\left(X_{1}, \ldots, X_{n}\right)$ is a iid sample with expected value $E\left(X_{i}\right)=\mu<\infty$. Then

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{\text { a.s. }} E\left(X_{i}\right)=\mu \quad \text { as } \quad n \rightarrow \infty
$$

\rightarrow Mean value converges to expected value

Central limit theorem (CLT)

$\left(X_{1}, \ldots, X_{n}\right)$ is a iid sample with $E\left(X_{i}\right)=\mu<\infty$ and $\operatorname{var}_{X_{i}}=\sigma^{2}<\infty$. Then

$$
\sqrt{n} \frac{\bar{X}_{n}-\mu}{\sigma} \xrightarrow{\mathrm{D}} Z \quad \text { as } \quad n \rightarrow \infty, \quad \text { with } Z \text { a normal random variable }
$$

\rightarrow Mean value has a normal asymptotic distribution

Example of the Bernoulli distribution

In the example machine, the state of a component has a Bernoulli distribution with expected value $\mu=p<\infty$ and variance $\sigma^{2}=p(1-p)<\infty$
\rightarrow Assumptions of LLN and CLT hold
The estimation \tilde{p} of the probability p that a component is defective is the mean value estimate

$$
\tilde{p}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \text { with } \quad X_{i}= \begin{cases}0 & \text { if the component } i \text { is operational } \\ 1 & \text { if the component } i \text { is defective }\end{cases}
$$

Example of the Bernoulli distribution

In the example machine, the state of a component has a Bernoulli distribution with expected value $\mu=p<\infty$ and variance $\sigma^{2}=p(1-p)<\infty$
\rightarrow Assumptions of LLN and CLT hold
The estimation \tilde{p} of the probability p that a component is defective is the mean value estimate

$$
\tilde{p}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \text { with } \quad X_{i}=\left\{\begin{array}{cl}
0 & \text { if the component } i \text { is operational } \\
1 & \text { if the component } i \text { is defective }
\end{array}\right.
$$

- LLN allows to show that the mean \tilde{p} converges to p as $n \rightarrow \infty$

Example of the Bernoulli distribution

In the example machine, the state of a component has a Bernoulli distribution with expected value $\mu=p<\infty$ and variance $\sigma^{2}=p(1-p)<\infty$
\rightarrow Assumptions of LLN and CLT hold
The estimation \tilde{p} of the probability p that a component is defective is the mean value estimate

$$
\tilde{p}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \text { with } \quad X_{i}= \begin{cases}0 & \text { if the component } i \text { is operational } \\ 1 & \text { if the component } i \text { is defective }\end{cases}
$$

- LLN allows to show that the mean \tilde{p} converges to p as $n \rightarrow \infty$
- CLT allows to describe the distribution of this estimator and to quantify the precision of estimation of p by \tilde{p} for fixed n

Example of the Bernoulli distribution

Example of the Bernoulli distribution

Example of the Bernoulli distribution

Distribution of the mean value -1 e 4 samples

$$
n=20
$$

Example of the Bernoulli distribution

Distribution of the mean value - 1 e 4 samples

Example of the Bernoulli distribution

Distribution of the mean value -1 e 4 samples

Example of the Bernoulli distribution

Distribution of the mean value -1 e 4 samples

Example of the Cauchy distribution

Cauchy distribution \mathcal{C} has PDF $f(x)=\left(\pi\left(1+x^{2}\right)\right)^{-1}$ with no expected value
Conditions for LLN and CLT are not satisfied
Mean value does not converge!

Example of the Cauchy distribution

Cauchy distribution \mathcal{C} has PDF $f(x)=\left(\pi\left(1+x^{2}\right)\right)^{-1}$ with no expected value
Conditions for LLN and CLT are not satisfied
Mean value does not converge!

Example of Cauchy distribution

Example of the Cauchy distribution

Example of the Cauchy distribution

Example of the Cauchy distribution

Likelihood function

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x)=P(x \mid \theta)=P\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

Likelihood function

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x)=P(x \mid \theta)=P\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

- The likelihood is a function of θ for a given sample

Likelihood function

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x)=P(x \mid \theta)=P\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

- The likelihood is a function of θ for a given sample
- Since the observations are iid, the likelihood is the product with P_{θ} the family of PDF for the (X_{i})

$$
L_{\theta}(x)=\prod_{i=1}^{n} P_{\theta}\left(x_{i}\right)
$$

Likelihood function

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x)=P(x \mid \theta)=P\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

- The likelihood is a function of θ for a given sample
- Since the observations are iid, the likelihood is the product with P_{θ} the family of PDF for the (X_{i})

$$
\begin{array}{r}
L_{\theta}(x)=\prod_{i=1}^{n} P_{\theta}\left(x_{i}\right) \\
\mathcal{L}_{\theta}(x)=\sum_{i=1}^{n} \log \left(P_{\theta}\left(x_{i}\right)\right)
\end{array}
$$

Likelihood function

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x)=P(x \mid \theta)=P\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

- The likelihood is a function of θ for a given sample
- Since the observations are iid, the likelihood is the product with P_{θ} the family of PDF for the (X_{i})

$$
L_{\theta}(x)=\prod_{i=1}^{n} P_{\theta}\left(x_{i}\right)
$$

- Log-likelihood to manipulate sum instead of product

$$
\mathcal{L}_{\theta}(x)=\sum_{i=1}^{n} \log \left(P_{\theta}\left(x_{i}\right)\right)
$$

Normal model:	$\begin{array}{l}L_{\theta}(x)=\exp \left(-\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \\ \\ \mathcal{L}_{\theta}(x)=-\frac{1}{2 \sigma^{2}} \sum_{i}\left(x_{i}-\mu\right)^{2}-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)\end{array}$

Normalised likelihood and log-likelihood for the normal distribution

PDF and random number generation with R

$$
\begin{aligned}
& \mathrm{d}\{\text { distrib_name }\}(x) \\
& \mathrm{p}\{\text { distrib_name }\}(q) \\
& \mathrm{q}\{\text { distrib_name }\}(p) \\
& \mathrm{r}\{\text { distrib_name }\}(n)
\end{aligned}
$$

Density function
Distribution function
Quantile function
Random number generator

More than 20 distributions available with R

Examples

```
dnorm(), pnorm(), qnorm(), rnorm() Normal distribution
dunif(), punif(), qunif(), runif()
dpois(), ppois(), qpois(), rpois()
```

Normal distribution
Uniform distribution
Poisson distribution

Estimator

Estimator

The parameters θ are calibrated using estimators
\rightarrow An estimator $\tilde{\theta}_{n}$ is a statistic i.e. a function of the data

$$
\begin{array}{rll|l|l}
\tilde{\theta} \quad \mathbb{R}^{n} & \mapsto & \mathbb{R}^{k} \\
x & \mapsto & \tilde{\theta}_{n}(x)
\end{array} \quad \text { with } \quad \begin{aligned}
& n \text { the number of observations } \\
& k \text { the number of parameters } \\
& x=\left(x_{1}, \ldots, x_{n}\right) \text { the observations }
\end{aligned}
$$

Estimator

The parameters θ are calibrated using estimators
\rightarrow An estimator $\tilde{\theta}_{n}$ is a statistic i.e. a function of the data

$$
\begin{array}{rll|l|l}
\tilde{\theta} \quad \mathbb{R}^{n} & \mapsto & \mathbb{R}^{k} \\
x & \mapsto & \tilde{\theta}_{n}(x)
\end{array} \quad \text { with } \quad \begin{aligned}
& n \text { the number of observations } \\
& k \text { the number of parameters } \\
& x=\left(x_{1}, \ldots, x_{n}\right) \text { the observations }
\end{aligned}
$$

- An estimator $\tilde{\theta}_{n}$ is a random variable (with mean value, variance, etc. . .)

Estimator

The parameters θ are calibrated using estimators
\rightarrow An estimator $\tilde{\theta}_{n}$ is a statistic i.e. a function of the data

$$
\begin{array}{rllc|l}
\tilde{\theta} \quad \mathbb{R}^{n} & \mapsto & \mathbb{R}^{k} \\
x & \mapsto & \tilde{\theta}_{n}(x)
\end{array} \quad \text { with } \quad \begin{aligned}
& n \text { the number of observations } \\
& k \text { the number of parameters } \\
& x=\left(x_{1}, \ldots, x_{n}\right) \text { the observations }
\end{aligned}
$$

- An estimator $\tilde{\theta}_{n}$ is a random variable (with mean value, variance, etc. . .)
- The distribution of $\tilde{\theta}_{n}$ depends on the distribution of the data (and so on θ and on n)

Estimator

The parameters θ are calibrated using estimators
\rightarrow An estimator $\tilde{\theta}_{n}$ is a statistic i.e. a function of the data

$$
\begin{array}{rll|l|l}
\tilde{\theta} \quad \mathbb{R}^{n} & \mapsto & \mathbb{R}^{k} \\
x & \mapsto & \tilde{\theta}_{n}(x)
\end{array} \quad \text { with } \quad \begin{aligned}
& n \text { the number of observations } \\
& k \text { the number of parameters } \\
& x=\left(x_{1}, \ldots, x_{n}\right) \text { the observations }
\end{aligned}
$$

- An estimator $\tilde{\theta}_{n}$ is a random variable (with mean value, variance, etc. . .)
- The distribution of $\tilde{\theta}_{n}$ depends on the distribution of the data (and so on θ and on n)
- An estimator $\tilde{\theta}_{n}$ must have specific properties to estimate the parameters θ

Bias of an estimator

$E_{\theta} \tilde{\theta}_{n}=\int_{\mathbb{R}^{n}} \tilde{\theta}_{n}(x) \prod_{i} \mathrm{~d} P_{\theta}\left(x_{i}\right)$ is the expected value of the estimator $\tilde{\theta}_{n}$
The bias B of an estimator $\tilde{\theta}_{n}$ of θ is the quantity

$$
B_{\theta}\left(\tilde{\theta}_{n}\right)=\theta-E_{\theta}\left(\tilde{\theta}_{n}\right)
$$

- An estimator is called unbiased if

$$
E_{\theta}\left(\tilde{\theta}_{n}\right)=\theta \quad \forall \theta \in \mathbb{R}^{k}
$$

- An estimator is asymptotically unbiased if

$$
E_{\theta}\left(\tilde{\theta}_{n}\right) \rightarrow \theta \quad \text { as } \quad n \rightarrow \infty \quad \forall \theta \in \mathbb{R}^{k}
$$

Bias: Examples

Bias for the mean value

- The mean \bar{X} is a unbiased estimate of the expected value $E_{\mu} X_{i}=\mu$

$$
E_{\mu}(\bar{X})=E_{\mu}\left(\frac{1}{n} \sum_{i} X_{i}\right)=\frac{1}{n} \sum_{i} E_{\mu} X_{i}=\mu \quad \forall \mu
$$

Bias: Examples

Bias for the mean value

- The mean \bar{X} is a unbiased estimate of the expected value $E_{\mu} X_{i}=\mu$

$$
E_{\mu}(\bar{X})=E_{\mu}\left(\frac{1}{n} \sum_{i} X_{i}\right)=\frac{1}{n} \sum_{i} E_{\mu} X_{i}=\mu \quad \forall \mu
$$

Bias for the variance

- The empirical variance s_{X}^{2} is asymptotically an unbiased estimate of the variance $\operatorname{var}_{\sigma}\left(X_{i}\right)=\sigma^{2}$

$$
\begin{aligned}
& E_{\sigma}\left(s_{X}^{2}\right)=E_{\sigma}\left(\frac{1}{n} \sum_{i}\left(X_{i}-\bar{X}\right)^{2}\right)=\frac{1}{n} \sum_{i} E_{\sigma}\left(X_{i}^{2}\right)-E_{\sigma}\left(\bar{X}^{2}\right)=\frac{n-1}{n} \sigma^{2} \quad \forall \sigma \\
& \rightarrow \quad \tilde{s}_{X}^{2}=\frac{n}{n-1} s_{X}^{2}=\frac{1}{n-1} \sum_{i}\left(X_{i}-\bar{X}\right)^{2} \text { is an unbiased estimate of the variance }
\end{aligned}
$$

Error and mean squared error

The error e of an estimator $\tilde{\theta}_{n}$ of θ is the quantity

$$
e_{\theta}\left(\tilde{\theta}_{n}\right)=\tilde{\theta}_{n}-\theta
$$

- The error is a random variable for which the variability is the one of the estimator
- The error is centred if the estimator is unbiased

Error and mean squared error

The error e of an estimator $\tilde{\theta}_{n}$ of θ is the quantity

$$
e_{\theta}\left(\tilde{\theta}_{n}\right)=\tilde{\theta}_{n}-\theta
$$

- The error is a random variable for which the variability is the one of the estimator
- The error is centred if the estimator is unbiased

The mean squared error MSE of an estimator $\tilde{\theta}_{n}$ of θ is the quantity

$$
\operatorname{MSE}_{\theta}\left(\tilde{\theta}_{n}\right)=E_{\theta}\left(\left(\tilde{\theta}_{n}-\theta\right)^{2}\right)=\operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right)+B_{\theta}^{2}\left(\tilde{\theta}_{n}\right)
$$

- The mean squared error is a deterministic quantity (variance of the error)
- Compromise between bias and variance of the estimator

Convergence properties

An estimator $\tilde{\theta}_{n}$ of θ is called consistent if

$$
\tilde{\theta}_{n} \rightarrow \theta \quad \text { as } \quad n \rightarrow \infty \quad \forall \theta \in \mathbb{R}^{k}
$$

- Necessary $\operatorname{MSE}_{\theta}\left(\tilde{\theta}_{n}\right) \rightarrow 0$ for a consistent estimator, i.e. at least asymptotic unbiased and with asymptotic variance nil
- Property generally obtained from the law of large numbers

Convergence properties

An estimator $\tilde{\theta}_{n}$ of θ is called consistent if

$$
\tilde{\theta}_{n} \rightarrow \theta \quad \text { as } \quad n \rightarrow \infty \quad \forall \theta \in \mathbb{R}^{k}
$$

- Necessary $\operatorname{MSE}_{\theta}\left(\tilde{\theta}_{n}\right) \rightarrow 0$ for a consistent estimator, i.e. at least asymptotic unbiased and with asymptotic variance nil
- Property generally obtained from the law of large numbers

The speed of convergence of a consistent estimator $\tilde{\theta}_{n}$ of θ is $\gamma>0$ such that

$$
n^{\gamma}\left(\tilde{\theta}_{n}-\theta\right) \rightarrow Z \quad \text { as } \quad n \rightarrow \infty \quad \forall \theta \in \mathbb{R}^{k}
$$

- Higher the convergence speed, better is the estimator
- Asymptotic convergence speed of $1 / 2$ given by the central limit theorem

Example of the uniform distribution

$\left(X_{1}, \ldots, X_{n}\right)$ uniform random variables on $[0, u]$
PDF: $f(x)=\frac{1}{u} \mathbb{1}_{[0, u]}(x)$
\rightarrow Two estimators for u

$$
\tilde{u}_{1}=2 \bar{X}_{n} \quad \text { and } \quad \tilde{u}_{2}=\max _{i} X_{i}
$$

Example of the uniform distribution

Estimator $\quad \tilde{u}_{1}=2 \bar{X}_{n}=\frac{2}{n} \sum_{i} X_{i}$

- Expected value : $E\left(\tilde{u}_{1}\right)=\frac{2}{n} \sum_{i} E\left(X_{i}\right)=u$ since $E\left(X_{i}\right)=u / 2 \quad$ Unbiased estimator
- Convergence speed $\gamma=1 / 2$

CLT : $n^{1 / 2}\left(\tilde{u}_{1}-u\right) \rightarrow Z$ as $n \rightarrow \infty$

Example of the uniform distribution

Estimator $\quad \tilde{u}_{1}=2 \bar{X}_{n}=\frac{2}{n} \sum_{i} X_{i}$

- Expected value : $E\left(\tilde{u}_{1}\right)=\frac{2}{n} \sum_{i} E\left(X_{i}\right)=u$ since $E\left(X_{i}\right)=u / 2 \quad$ Unbiased estimator
- Convergence speed $\gamma=1 / 2$ CLT : $n^{1 / 2}\left(\tilde{u}_{1}-u\right) \rightarrow Z$ as $n \rightarrow \infty$

Estimator $\quad \tilde{u}_{2}=\max _{i} X_{i}$

- $P\left(\tilde{u}_{2} \leq x\right)=P\left(\cap_{i}\left\{X_{i} \leq x\right\}\right)=(x / u)^{n}$ therefore a PDF for \tilde{u}_{2} is $f_{2}(x)=n x^{n-1} u^{-n}$ Expected value : $E\left(\tilde{u}_{2}\right)=\int x f_{2} \mathrm{~d} x=\frac{n}{n+1} u \quad$ Asymptotically unbiased estimator
- $P\left(n^{\gamma}\left(\tilde{u}_{2}-u\right) \geq \varepsilon\right)=1-\left(1+\varepsilon n^{-\gamma} / u\right)^{n} \sim 1-e^{\varepsilon n^{1-\gamma} / u} \rightarrow 0$ as $n \rightarrow \infty$ if $\gamma>1$

Convergence speed $\gamma=1$

Example of the uniform distribution

$$
\text { Estimator } \quad \tilde{u}_{1}=2 \bar{X}_{n}=\frac{2}{n} \sum_{i} X_{i}
$$

- Expected value: $E\left(\tilde{u}_{1}\right)=\frac{2}{n} \sum_{i} E\left(X_{i}\right)=u$ since $E\left(X_{i}\right)=u / 2 \quad$ Unbiased estimator
- Convergence speed $\gamma=1 / 2$ CLT : $n^{1 / 2}\left(\tilde{u}_{1}-u\right) \rightarrow Z$ as $n \rightarrow \infty$

Estimator $\quad \tilde{u}_{2}=\max _{i} X_{i}$

- $P\left(\tilde{u}_{2} \leq x\right)=P\left(\cap_{i}\left\{X_{i} \leq x\right\}\right)=(x / u)^{n}$ therefore a PDF for \tilde{u}_{2} is $f_{2}(x)=n x^{n-1} u^{-n}$ Expected value: $E\left(\tilde{u}_{2}\right)=\int x f_{2} \mathrm{~d} x=\frac{n}{n+1} u$

Asymptotically unbiased estimator

- $P\left(n^{\gamma}\left(\tilde{u}_{2}-u\right) \geq \varepsilon\right)=1-\left(1+\varepsilon n^{-\gamma} / u\right)^{n} \sim 1-e^{\varepsilon n^{1-\gamma} / u} \rightarrow 0$ as $n \rightarrow \infty$ if $\gamma>1$

Convergence speed $\gamma=1$
\tilde{u}_{2} better than \tilde{u}_{1}

Example of the uniform distribution

Example of the uniform distribution

Example of the uniform distribution

Distribution of the estimators - 1 e 4 samples

$$
n=1000
$$

Example of the uniform distribution

Distribution of the estimators - 1e4 samples

$$
n=1000
$$

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_{n}^{s}(x)$ is sufficient (or exhaustive) with respect to an unknown parameter θ if
No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher-Neyman factorization criterion: $\quad \tilde{\theta}_{n}$ sufficient for θ iff $\exists g, h, \quad L_{\theta}(x)=h(x) g_{\theta}\left(\tilde{\theta}_{n}(x)\right)$

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_{n}^{s}(x)$ is sufficient (or exhaustive) with respect to an unknown parameter θ if
No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher-Neyman factorization criterion: $\quad \tilde{\theta}_{n}$ sufficient for θ iff $\exists g, h, \quad L_{\theta}(x)=h(x) g_{\theta}\left(\tilde{\theta}_{n}(x)\right)$
Example of the uniform distribution on $[0, u]: \quad L_{u}(x)=u^{-n} \mathbb{1}_{\min _{i} x_{i} \geq 0} \mathbb{1}_{\max _{i} x_{i} \leq u}$
$\rightarrow \quad \tilde{u}_{2}=\max _{i} x_{i}$ is a sufficient statistic for u but $\tilde{u}_{1}=2 \bar{x}_{n}$ is not

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_{n}^{s}(x)$ is sufficient (or exhaustive) with respect to an unknown parameter θ if
No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher-Neyman factorization criterion: $\quad \tilde{\theta}_{n}$ sufficient for θ iff $\exists g, h, \quad L_{\theta}(x)=h(x) g_{\theta}\left(\tilde{\theta}_{n}(x)\right)$
Example of the uniform distribution on $[0, u]: \quad L_{u}(x)=u^{-n} \mathbb{1}_{\min _{i} x_{i} \geq 0} \mathbb{1}_{\max _{i} x_{i} \leq u}$
$\rightarrow \quad \tilde{u}_{2}=\max _{i} x_{i}$ is a sufficient statistic for u but $\tilde{u}_{1}=2 \bar{x}_{n}$ is not

- Blackwell-Rao theorem : For any estimate $\tilde{\theta}_{n}$ of $\theta, \operatorname{var}_{\theta}\left(E\left(\tilde{\theta}_{n} \mid \tilde{\theta}_{n}^{s}\right)\right) \leq \operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right)$

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_{n}^{s}(x)$ is sufficient (or exhaustive) with respect to an unknown parameter θ if
No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher-Neyman factorization criterion: $\quad \tilde{\theta}_{n}$ sufficient for θ iff $\exists g, h, \quad L_{\theta}(x)=h(x) g_{\theta}\left(\tilde{\theta}_{n}(x)\right)$
Example of the uniform distribution on [0,u]: $\quad L_{u}(x)=u^{-n} \mathbb{1}_{\min _{i} x_{i} \geq 0} \mathbb{1}_{\max _{i} x_{i} \leq u}$
$\rightarrow \quad \tilde{u}_{2}=\max _{i} x_{i}$ is a sufficient statistic for u but $\tilde{u}_{1}=2 \bar{x}_{n}$ is not

- Blackwell-Rao theorem : For any estimate $\tilde{\theta}_{n}$ of $\theta, \operatorname{var}_{\theta}\left(E\left(\tilde{\theta}_{n} \mid \tilde{\theta}_{n}^{s}\right)\right) \leq \operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right)$
- Fisher information $I_{x}(\theta)=E\left[\left(\partial \ln \left(L_{\theta}(x)\right) / \partial \theta\right)^{2}\right]$ quantifies information on θ given by x
\rightarrow We have in general $I_{\tilde{\theta}(x)}(\theta) \leq I_{x}(\theta)$ and $I_{\tilde{\theta}^{s}(x)}(\theta)=I_{x}(\theta)$ for a sufficient statistic

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_{n}^{s}(x)$ is sufficient (or exhaustive) with respect to an unknown parameter θ if
No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher-Neyman factorization criterion: $\quad \tilde{\theta}_{n}$ sufficient for θ iff $\exists g, h, \quad L_{\theta}(x)=h(x) g_{\theta}\left(\tilde{\theta}_{n}(x)\right)$
Example of the uniform distribution on [0,u]: $\quad L_{u}(x)=u^{-n} \mathbb{1}_{\min _{i} x_{i} \geq 0} \mathbb{1}_{\max _{i} x_{i} \leq u}$
$\rightarrow \quad \tilde{u}_{2}=\max _{i} x_{i}$ is a sufficient statistic for u but $\tilde{u}_{1}=2 \bar{x}_{n}$ is not

- Blackwell-Rao theorem : For any estimate $\tilde{\theta}_{n}$ of $\theta, \operatorname{var}_{\theta}\left(E\left(\tilde{\theta}_{n} \mid \tilde{\theta}_{n}^{s}\right)\right) \leq \operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right)$
- Fisher information $I_{x}(\theta)=E\left[\left(\partial \ln \left(L_{\theta}(x)\right) / \partial \theta\right)^{2}\right]$ quantifies information on θ given by x
\rightarrow We have in general $I_{\tilde{\theta}(x)}(\theta) \leq I_{x}(\theta)$ and $I_{\tilde{\theta}^{s}(x)}(\theta)=I_{x}(\theta)$ for a sufficient statistic
- Cramer-Rao bound: Under regularity assumptions $1 / I_{x}(\theta) \leq \operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right), \forall \tilde{\theta}_{n}$ unbiased
\rightarrow An estimate is called efficient iff $\operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right)=1 / I_{x}(\theta)$
\rightarrow An efficient statistic is necessary sufficient
—Punctual estimation

Punctual estimation

Introduction

Punctual estimations of parameters are non-linear optimisation problems for an objective function $\quad f_{x}(\theta)$
x are the data (given)
θ are the parameters (to optimize over \mathbb{R}^{k})
\rightarrow Hard problem when f is not regular (discontinuous, multi-modal, noisy, ...) Convergence to local minima

Introduction

Punctual estimations of parameters are non-linear optimisation problems for an objective function $f_{x}(\theta)$
x are the data (given)
θ are the parameters (to optimize over \mathbb{R}^{k})
\rightarrow Hard problem when f is not regular (discontinuous, multi-modal, noisy, ...) Convergence to local minima

Formulation of the objective function f by

- Least squares
- Likelihood
- Bayesian approach

Non-parametric approach Maximum likelihood estimate

Prior on the parameters

Optimisation with R

MLE and posterior PDF are optimisation problems for functions $f: \mathbb{R}^{k} \mapsto \mathbb{R}$

Optimisation with \mathbf{R} (general case)

with par the initial values for the parameters and f the function to optimize
Exist different optimisation methods (Nelder-Mead, quasi-Newton, ...)
Quasi-Netwon method ' L-BFGS-B', allows box constraints for the parameter

Least-squares optimisation with \mathbf{R}

- Multilinear models
- Non-linear models

$$
\begin{array}{r}
\operatorname{lm}(\mathrm{f}, \mathrm{X}) \\
\mathrm{nls}(\mathrm{f}, \mathrm{X}, \mathrm{par})
\end{array}
$$

Maximum likelihood estimation

Maximum Likelihood Estimation (MLE)

$$
\tilde{\theta}^{\mathrm{MLE}}(x)=\arg \max _{\theta \in \mathbb{R}^{k}} L_{\theta}(x)
$$

- Most probable estimation knowing the data of parameter θ for the distribution family
- MLE can be determined by maximizing the log-likelihood

Maximum likelihood estimation

Maximum Likelihood Estimation (MLE)

$$
\tilde{\theta}^{\mathrm{MLE}}(x)=\arg \max _{\theta \in \mathbb{R}^{k}} L_{\theta}(x)
$$

- Most probable estimation knowing the data of parameter θ for the distribution family
- MLE can be determined by maximizing the log-likelihood

MLE have many interesting properties justifying its large use

- MLE not necessary unbiased but is in general asymptotically unbiased
- If it exits a sufficient statistic then MLE depends on it (but MLE not necessary sufficient)
- If it exits a efficient statistic then it is the MLE (regularity assumptions of Cramer-Rao th.)
\rightarrow MLE generally better than least squares or moment methods (cf. uniform distribution)

MLE for the normal distribution

MLE for the normal distribution

MLE for different distributions

- Normal distribution

$$
\begin{aligned}
& \text { The likelihood of the Gaussian model is } L_{\theta}(x)=\frac{1}{(\sqrt{2 \pi} \sigma)^{n}} \exp \left(-\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
& \text { MLE of } \mu \text { and } \sigma \text { solution of } \frac{\partial L_{\theta}}{\partial \mu}=\frac{\partial L_{\theta}}{\partial \sigma}=0 \text { are } \quad \tilde{\mu}_{n}^{\mathrm{MLE}}=\bar{x} \quad \text { and } \quad \tilde{\sigma}_{n}^{\mathrm{MLE}}=s_{x}
\end{aligned}
$$

\rightarrow Arithmetic mean and empirical variance are the MLE for parameters μ and σ^{2} of the normal distribution

MLE for different distributions

- Normal distribution

The likelihood of the Gaussian model is $L_{\theta}(x)=\frac{1}{(\sqrt{2 \pi} \sigma)^{n}} \exp \left(-\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)$
MLE of μ and σ solution of $\frac{\partial L_{\theta}}{\partial \mu}=\frac{\partial L_{\theta}}{\partial \sigma}=0$ are $\quad \tilde{\mu}_{n}^{\mathrm{MLE}}=\bar{x} \quad$ and $\quad \tilde{\sigma}_{n}^{\mathrm{MLE}}=s_{x}$
\rightarrow Arithmetic mean and empirical variance are the MLE for parameters μ and σ^{2} of the normal distribution

- Exponential distribution

The likelihood of the exponential model is $L_{\lambda}(x)=\lambda^{n} \exp \left(-\lambda \sum_{i} x_{i}\right)$
MLE of λ solution of $\frac{\partial L_{\lambda}}{\partial \lambda}=0$ is $\quad \tilde{\lambda}_{n}^{\text {MLE }}=(\bar{x})^{-1}$
\rightarrow Inverse of arithmetic mean is the MLE for the exponential distribution parameter λ

MLE for different distributions

- Normal distribution

The likelihood of the Gaussian model is $L_{\theta}(x)=\frac{1}{(\sqrt{2 \pi} \sigma)^{n}} \exp \left(-\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)$
MLE of μ and σ solution of $\frac{\partial L_{\theta}}{\partial \mu}=\frac{\partial L_{\theta}}{\partial \sigma}=0$ are $\quad \tilde{\mu}_{n}^{\mathrm{MLE}}=\bar{x} \quad$ and $\quad \tilde{\sigma}_{n}^{\mathrm{MLE}}=s_{x}$
\rightarrow Arithmetic mean and empirical variance are the MLE for parameters μ and σ^{2} of the normal distribution

- Exponential distribution

The likelihood of the exponential model is $L_{\lambda}(x)=\lambda^{n} \exp \left(-\lambda \sum_{i} x_{i}\right)$
MLE of λ solution of $\frac{\partial L_{\lambda}}{\partial \lambda}=0$ is $\quad \tilde{\lambda}_{n}^{\text {MLE }}=(\bar{x})^{-1}$
\rightarrow Inverse of arithmetic mean is the MLE for the exponential distribution parameter λ

- Uniform distribution

The likelihood of the uniform model on $[0, u]$ is $L_{u}(x)= \begin{cases}\frac{1}{u^{n}} & \text { if } \min _{i} x_{i} \geq 0 \text { and } \max _{i} x_{i} \leq u \\ 0 & \text { otherwise }\end{cases}$
MLE of u is

$$
\tilde{u}_{n}^{\mathrm{MLE}}=\max _{i} x_{i} \quad\left(\text { but } \frac{\partial L_{u}}{\partial u} \text { not defined for } u=\max _{i} x_{i}\right)
$$

\rightarrow The maximum is the MLE of u for the uniform distribution on $[0, u$]

MLE and the linear regression

Linear model with Gaussian noise

$$
y_{i}=\left(a x_{i}+b\right)+\sigma \mathcal{E}_{i}, \quad \text { with }\left(\mathcal{E}_{i}\right) \text { iid } \mathcal{N}(0,1)
$$

\rightarrow Residuals $R_{i}(a, b)=y_{i}-\left(a x_{i}+b\right)$ are supposed normally distributed

MLE and the linear regression

Linear model with Gaussian noise

$$
y_{i}=\left(a x_{i}+b\right)+\sigma \mathcal{E}_{i}, \quad \text { with }\left(\mathcal{E}_{i}\right) \text { iid } \mathcal{N}(0,1)
$$

\rightarrow Residuals $R_{i}(a, b)=y_{i}-\left(a x_{i}+b\right)$ are supposed normally distributed

The likelihood of the Gaussian linear model is

$$
L_{\theta}(x)=\frac{1}{(\sqrt{2 \pi} \sigma)^{n}} \exp \left(-\frac{\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}}{2 \sigma^{2}}\right)
$$

- Likelihood maximal if $\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}$ is minimal

MLE and the linear regression

Linear model with Gaussian noise

$$
y_{i}=\left(a x_{i}+b\right)+\sigma \mathcal{E}_{i}, \quad \text { with }\left(\mathcal{E}_{i}\right) \text { iid } \mathcal{N}(0,1)
$$

\rightarrow Residuals $R_{i}(a, b)=y_{i}-\left(a x_{i}+b\right)$ are supposed normally distributed

The likelihood of the Gaussian linear model is

$$
L_{\theta}(x)=\frac{1}{(\sqrt{2 \pi} \sigma)^{n}} \exp \left(-\frac{\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}}{2 \sigma^{2}}\right)
$$

- Likelihood maximal if $\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}$ is minimal
\rightarrow OLS estimates is MLE when the residuals are Gaussian
(and the empirical standard deviation is the MLE of noise amplitude σ)

The Bayesian approach

Bayesian approach consists in using prior distributions for the parameters and to analyse posterior distributions conditionally to the data

- Data x are observable random variables with distribution (likelihood) $P(x \mid \theta)$
- Parameters θ are latent (unknown) random variables with prior distribution $P(\theta)$

The Bayesian approach

Bayesian approach consists in using prior distributions for the parameters and to analyse posterior distributions conditionally to the data

- Data x are observable random variables with distribution (likelihood)

$$
P(x \mid \theta)
$$

- Parameters θ are latent (unknown) random variables with prior distribution

Bayes Theorem

$$
\begin{gathered}
P_{x}(\theta)=P(\theta \mid x)=\frac{P(x, \theta)}{P(x)}=\frac{P(\theta) P(x \mid \theta)}{P(x)} \\
\text { posterior } \propto \text { prior } * \text { likelihood }
\end{gathered}
$$

- Punctual estimations of θ by mode, median or mean of posterior distribution $P_{x}(\theta)$
- Posterior distribution $=($ normalized $)$ likelihood when prior is uniform
\rightarrow MLE is the mode of posterior with non-informative prior

Algorithms to calculate MLE and posterior PDF

MLE or posterior PDF are complex problems having in general no explicit solutions
\rightarrow Approximation by iterative algorithms (starting from initial value $\tilde{\theta}_{n}^{(0)}$ for the parameters)

Algorithms to calculate MLE and posterior PDF

MLE or posterior PDF are complex problems having in general no explicit solutions
\rightarrow Approximation by iterative algorithms (starting from initial value $\tilde{\theta}_{n}^{(0)}$ for the parameters)

- Gibbs sampling Randomized algorithm - MCMC

Simulation of $\tilde{\theta}_{n}^{(i)}$ as random variables with distribution $P\left(\tilde{\theta}_{n}^{(i-1)}\right) P\left(x \mid \tilde{\theta}_{n}^{(i-1)}\right)$ (convergence to posterior distribution)

- Expectation-Maximization (EM)

Deterministic algorithm
Iterations of maximisation of the parameters $\tilde{\theta}_{n}^{(i)}$ of the expected log-likelihood conditionally to the data and values $\tilde{\theta}_{n}^{(i-1)}$ of the parameters at previous step

- Variational Bayesian (VB)

Estimation of posterior distribution by minimizing the Kullback-Leibler divergence measure with parameter previous values $\tilde{\theta}_{n}^{(i-1)}$ over a partition of their domain

Comparing Bayesian, MLE and OLS approaches

OLS and MLE are close when residuals have compact (normal) distributions

Bayesian estimate and MLE are close when:

- Prior bring few information (straight distribution) or data is large (concentrated likelihood)

Bayesian estimate and MLE are different when :

- Prior are strong (concentrated distribution) or data is few (straight likelihood)

Comparing Bayesian, MLE and OLS approaches

OLS and MLE are close when residuals have compact (normal) distributions

Bayesian estimate and MLE are close when:

- Prior bring few information (straight distribution) or data is large (concentrated likelihood)

Bayesian estimate and MLE are different when :

- Prior are strong (concentrated distribution) or data is few (straight likelihood)

MLE or OLS should be substituted by Bayesian estimates when:

- The dataset is small
- Models are complex (many parameters)
- We have a priori on the parameter values
- Dynamical integration of new data

Summary

Approach	Advantage	Inconvenient
OLS	Easy to use	Sensible to extreme values
MLE	Many strong and useful properties	Asymptotic theory (valid if enough data)
Bayes	Flexible / Valid for any sample size	Can strongly depend on prior

Summary

Approach	Advantage	Inconvenient
OLS	Easy to use	Sensible to extreme values
MLE	Many strong and useful properties	Asymptotic theory (valid if enough data)
Bayes	Flexible / Valid for any sample size	Can strongly depend on prior

Generalisation

OLS $\longleftarrow \stackrel{\text { Normal residuals }}{ } \quad$ MLE \quad| Uniform prior |
| :---: | Bayes

—Precision of estimation

Precision of estimation

Introduction

Punctual estimates give no indication on the precision of estimation
A fitting can be insignificant when it changes from a sample to another (cf. bootstrap) Significance of the differences between different populations to statute
\rightarrow Evaluation of the precision of estimation with confidence intervals

Introduction

Punctual estimates give no indication on the precision of estimation
A fitting can be insignificant when it changes from a sample to another (cf. bootstrap)
Significance of the differences between different populations to statute
\rightarrow Evaluation of the precision of estimation with confidence intervals
$\mathrm{Cl}=\left[i_{-}, i_{+}\right]$is a confidence interval for θ at the confidence level $1-\alpha$ if

$$
P_{\theta}(\theta \in \mathrm{CI}) \geq 1-\alpha, \quad \forall \theta \in \mathbb{R}^{k}
$$

Parameter θ belongs to Cl in more than $1-\alpha \%$ of the cases

- Interval of values with a confidence level instead of punctual estimation
- Precision of estimation of deterministic quantities: Size of the Cl reduces as $n \rightarrow \infty$
- Distinct from prediction intervals taking into account the noise to predict new observations

Construction of a confidence interval

The construction of a confidence interval is based on knowledge on the distribution (variability), or on the asymptotic distribution, of an estimator

If $q_{\theta}(u)$ is the quantile of the estimator $\tilde{\theta}_{n}$, then by construction

$$
P_{\theta}\left(\tilde{\theta}_{n}(x) \in\left[q_{\theta}(\alpha / 2), q_{\theta}(1-\alpha / 2)\right]\right) \geq 1-\alpha, \quad \forall \theta \in \mathbb{R}^{k}, \quad \alpha \in(0,1)
$$

\rightarrow Construction of a CI by extracting θ in the inequalities $\quad \tilde{\theta}_{n}(x) \in\left[q_{\theta}(\alpha / 2), q_{\theta}(1-\alpha / 2)\right]$

Construction of a confidence interval

The construction of a confidence interval is based on knowledge on the distribution (variability), or on the asymptotic distribution, of an estimator

If $q_{\theta}(u)$ is the quantile of the estimator $\tilde{\theta}_{n}$, then by construction

$$
P_{\theta}\left(\tilde{\theta}_{n}(x) \in\left[q_{\theta}(\alpha / 2), q_{\theta}(1-\alpha / 2)\right]\right) \geq 1-\alpha, \quad \forall \theta \in \mathbb{R}^{k}, \quad \alpha \in(0,1)
$$

\rightarrow Construction of a Cl by extracting θ in the inequalities $\quad \tilde{\theta}_{n}(x) \in\left[q_{\theta}(\alpha / 2), q_{\theta}(1-\alpha / 2)\right]$

Situation generally not accessible since estimator distribution is unknown

- Use of sufficient conditions
- Asymptotic distribution
- Posterior distribution

Tchebychev inequality
Central limit theorem
Bayes approach

Confidence interval with the Tchebychev inequality

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$, for which exists unbiased estimator $\tilde{\theta}_{n}$ of θ such that $\operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right) \leq K_{n}<\infty$

Confidence interval with the Tchebychev inequality

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$, for which exists unbiased estimator $\tilde{\theta}_{n}$ of θ such that $\operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right) \leq K_{n}<\infty$

The Tchebychev inequality gives: $\quad P_{\theta}\left(\left|\theta-\tilde{\theta}_{n}\right|>\epsilon\right) \leq \frac{K_{n}}{\epsilon^{2}}, \quad \forall \epsilon>0, \quad \theta \in \mathbb{R}$
\rightarrow For $\epsilon=\sqrt{K_{n} / \alpha}, \alpha \in(0,1)$, we get the symmetric Cl for θ :

$$
P_{\theta}(\theta \in \underbrace{\left[\tilde{\theta}_{n} \pm \sqrt{K_{n} / \alpha}\right]}_{\mathrm{Cl} \text { level } \alpha}) \geq 1-\alpha
$$

Confidence interval with the Tchebychev inequality

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$, for which exists unbiased estimator $\tilde{\theta}_{n}$ of θ such that $\operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right) \leq K_{n}<\infty$

The Tchebychev inequality gives: $\quad P_{\theta}\left(\left|\theta-\tilde{\theta}_{n}\right|>\epsilon\right) \leq \frac{K_{n}}{\epsilon^{2}}, \quad \forall \epsilon>0, \quad \theta \in \mathbb{R}$
\rightarrow For $\epsilon=\sqrt{K_{n} / \alpha}, \alpha \in(0,1)$, we get the symmetric CI for θ :

$$
P_{\theta}(\theta \in \underbrace{\left[\tilde{\theta}_{n} \pm \sqrt{K_{n} / \alpha}\right]}_{\mathrm{CI} \text { level } \alpha}) \geq 1-\alpha
$$

- CI tends to punctual estimator if variability bound K_{n} tends to zero

Confidence interval with the Tchebychev inequality

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$, for which exists unbiased estimator $\tilde{\theta}_{n}$ of θ such that $\operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right) \leq K_{n}<\infty$

The Tchebychev inequality gives: $\quad P_{\theta}\left(\left|\theta-\tilde{\theta}_{n}\right|>\epsilon\right) \leq \frac{K_{n}}{\epsilon^{2}}, \quad \forall \epsilon>0, \quad \theta \in \mathbb{R}$
\rightarrow For $\epsilon=\sqrt{K_{n} / \alpha}, \alpha \in(0,1)$, we get the symmetric Cl for θ :

$$
P_{\theta}(\theta \in \underbrace{\left[\tilde{\theta}_{n} \pm \sqrt{K_{n} / \alpha}\right]}_{\mathrm{Cl} \text { level } \alpha}) \geq 1-\alpha
$$

- CI tends to punctual estimator if variability bound K_{n} tends to zero
- Cl tends to \mathbb{R} if $\alpha \rightarrow 0(\theta$ trivially always belong to CI$)$

Confidence interval with the Tchebychev inequality

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$, for which exists unbiased estimator $\tilde{\theta}_{n}$ of θ such that $\operatorname{var}_{\theta}\left(\tilde{\theta}_{n}\right) \leq K_{n}<\infty$

The Tchebychev inequality gives: $\quad P_{\theta}\left(\left|\theta-\tilde{\theta}_{n}\right|>\epsilon\right) \leq \frac{K_{n}}{\epsilon^{2}}, \quad \forall \epsilon>0, \quad \theta \in \mathbb{R}$
\rightarrow For $\epsilon=\sqrt{K_{n} / \alpha}, \alpha \in(0,1)$, we get the symmetric CI for θ :

$$
P_{\theta}(\theta \in \underbrace{\left[\tilde{\theta}_{n} \pm \sqrt{K_{n} / \alpha}\right]}_{\mathrm{Cl} \text { level } \alpha}) \geq 1-\alpha
$$

- CI tends to punctual estimator if variability bound K_{n} tends to zero
- CI tends to \mathbb{R} if $\alpha \rightarrow 0$ (θ trivially always belong to CI)
- Tchebychev inequality very large : parameter belongs to the Cl in more than $1-\alpha \%$ of the cases - Confidence interval for excess

Asymptotic confidence intervals

Assumption: $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$ and $\sigma^{2}=\operatorname{var}\left(X_{i}\right)<\infty$
Central limit theorem $\quad P_{\theta}\left(\sqrt{n} \frac{1 / n \sum_{i} X_{i}-\theta}{\sigma} \in\left[q_{\mathcal{N}}(\alpha / 2), q_{\mathcal{N}}(1-\alpha / 2)\right]\right) \underset{n \rightarrow \infty}{\xrightarrow{D}} 1-\alpha$

Asymptotic confidence intervals

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$ and $\sigma^{2}=\operatorname{var}\left(X_{i}\right)<\infty$

$$
\text { Central limit theorem } \quad P_{\theta}\left(\sqrt{n} \frac{1 / n \sum_{i} x_{i}-\theta}{\sigma} \in\left[q_{\mathcal{N}}(\alpha / 2), q_{\mathcal{N}}(1-\alpha / 2)\right]\right) \underset{n}{\rightarrow}{ }^{D} 1-\alpha
$$

Asymptotic symmetric confidence interval for θ :

$$
P_{\theta}(\theta \in \underbrace{\left[\frac{1}{n} \sum_{i} X_{i} \pm q_{\mathcal{N}}(\alpha / 2) \frac{\sigma}{\sqrt{n}}\right]}_{\text {asymptotic CI level } \alpha}) \rightarrow 1-\alpha \quad \text { as } \quad n \rightarrow \infty
$$

Asymptotic confidence intervals

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$ and $\sigma^{2}=\operatorname{var}\left(X_{i}\right)<\infty$

$$
\text { Central limit theorem } \quad P_{\theta}\left(\sqrt{n} \frac{1 / n \sum_{i} x_{i}-\theta}{\sigma} \in\left[q_{\mathcal{N}}(\alpha / 2), q_{\mathcal{N}}(1-\alpha / 2)\right]\right) \underset{n}{\rightarrow} 1-\alpha
$$

Asymptotic symmetric confidence interval for θ :

$$
P_{\theta}(\theta \in \underbrace{\left[\frac{1}{n} \sum_{i} X_{i} \pm q_{\mathcal{N}}(\alpha / 2) \frac{\sigma}{\sqrt{n}}\right]}_{\text {asymptotic } \mathrm{CI} \text { level } \alpha}) \rightarrow 1-\alpha \quad \text { as } \quad n \rightarrow \infty
$$

- CI tends to mean value if $\sigma^{2}=\operatorname{var}\left(X_{i}\right) \rightarrow 0$ or if $n \rightarrow \infty$

Asymptotic confidence intervals

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$ and $\sigma^{2}=\operatorname{var}\left(X_{i}\right)<\infty$

$$
\text { Central limit theorem } \quad P_{\theta}\left(\sqrt{n} \frac{1 / n \sum_{i} x_{i}-\theta}{\sigma} \in\left[q_{\mathcal{N}}(\alpha / 2), q_{\mathcal{N}}(1-\alpha / 2)\right]\right) \underset{n}{\rightarrow}{ }^{D} 1-\alpha
$$

Asymptotic symmetric confidence interval for θ :

$$
P_{\theta}(\theta \in \underbrace{\left[\frac{1}{n} \sum_{i} X_{i} \pm q_{\mathcal{N}}(\alpha / 2) \frac{\sigma}{\sqrt{n}}\right]}_{\text {asymptotic } \mathrm{CI} \text { level } \alpha}) \rightarrow 1-\alpha \quad \text { as } \quad n \rightarrow \infty
$$

- CI tends to mean value if $\sigma^{2}=\operatorname{var}\left(X_{i}\right) \rightarrow 0$ or if $n \rightarrow \infty$
- CI tends to \mathbb{R} if $\alpha \rightarrow 0$

Asymptotic confidence intervals

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample, $\theta=E\left(X_{i}\right)$ and $\sigma^{2}=\operatorname{var}\left(X_{i}\right)<\infty$

$$
\text { Central limit theorem } \quad P_{\theta}\left(\sqrt{n} \frac{1 / n \sum_{i} x_{i}-\theta}{\sigma} \in\left[q_{\mathcal{N}}(\alpha / 2), q_{\mathcal{N}}(1-\alpha / 2)\right]\right) \underset{n}{\rightarrow} 1-\alpha
$$

Asymptotic symmetric confidence interval for θ :

$$
P_{\theta}(\theta \in \underbrace{\left[\frac{1}{n} \sum_{i} X_{i} \pm q_{\mathcal{N}}(\alpha / 2) \frac{\sigma}{\sqrt{n}}\right]}_{\text {asymptotic } \mathrm{CI} \text { level } \alpha}) \rightarrow 1-\alpha \quad \text { as } \quad n \rightarrow \infty
$$

- CI tends to mean value if $\sigma^{2}=\operatorname{var}\left(X_{i}\right) \rightarrow 0$ or if $n \rightarrow \infty$
- CI tends to \mathbb{R} if $\alpha \rightarrow 0$
- Asymptotic Cl still valid substituting σ by empirical estimator σ_{x} (exact CI : Student)

Cl for the expected value of normal distribution

Number of observations n

Bayesian credible interval using posterior PDF

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample and $P(\theta)$ is a prior distribution on the parameters such that $P(\theta)>0$

Bayesian credible interval using posterior PDF

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample and $P(\theta)$ is a prior distribution on the parameters such that $P(\theta)>0$

Bayesian credible interval Cl^{B} of θ given by the quantiles q_{x}^{B} of posterior PDF

$$
P_{\theta}(\theta \in \underbrace{\left[q_{x}^{B}(\alpha / 2), q_{x}^{B}(1-\alpha / 2)\right]}_{\text {Bayesian } \mathrm{Cl}^{B} \text { level } \alpha}) \geq 1-\alpha
$$

Bayesian credible interval using posterior PDF

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample and $P(\theta)$ is a prior distribution on the parameters such that $P(\theta)>0$

Bayesian credible interval Cl^{B} of θ given by the quantiles q_{x}^{B} of posterior PDF

$$
P_{\theta}(\theta \in \underbrace{\left[q_{x}^{B}(\alpha / 2), q_{x}^{B}(1-\alpha / 2)\right]}_{\text {Bayesian } \mathrm{Cl}^{B} \text { level } \alpha}) \geq 1-\alpha
$$

- The size and symmetry of Cl^{B} depends on the posterior distribution that depends on the prior and likelihood

Bayesian credible interval using posterior PDF

Assumption : $x=\left(X_{1}, \ldots, X_{n}\right)$ is a iid P_{θ}-sample and $P(\theta)$ is a prior distribution on the parameters such that $P(\theta)>0$

Bayesian credible interval Cl^{B} of θ given by the quantiles q_{x}^{B} of posterior PDF

$$
P_{\theta}(\theta \in \underbrace{\left[q_{x}^{B}(\alpha / 2), q_{x}^{B}(1-\alpha / 2)\right]}_{\text {Bayesian } \mathrm{Cl}^{B} \text { level } \alpha}) \geq 1-\alpha
$$

- The size and symmetry of Cl^{B} depends on the posterior distribution that depends on the prior and likelihood
- Asymptotic Cl converges to the uninformed Bayes Cl^{B} with uniform prior

Cl for the expected value of normal distribution

Number of observations n

Cl for the expected value of normal distribution

Number of observations n

Cl for the expected value of normal distribution

Number of observations n

Cl for the expected value of normal distribution

Number of observations n

Asymptotic confidence interval for the variance

Calculation of a asymptotic confidence interval for the variance parameter σ^{2}

$$
\begin{equation*}
\frac{1}{\sigma} \frac{n-1}{n} \sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}=\frac{(n-1) s}{\sigma} \underset{n \rightarrow \infty}{\xrightarrow{\mathrm{D}}} \chi^{2}(n-1) \tag{CLT}
\end{equation*}
$$

with $\chi^{2}(n-1)$ the Chi-square distribution with $n-1$ degrees of freedom
Then

$$
P(\sigma \in \underbrace{\left[\frac{(n-1) s}{q_{\chi^{2}}(\alpha / 2)}, \frac{(n-1) s}{q_{\chi^{2}}(1-\alpha / 2)}\right]}_{\text {asymptotic CI level } \alpha}) \underset{n \rightarrow \infty}{\rightarrow} 1-\alpha
$$

Asymptotic confidence interval for the variance

Calculation of a asymptotic confidence interval for the variance parameter σ^{2}

$$
\begin{equation*}
\frac{1}{\sigma} \frac{n-1}{n} \sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}=\frac{(n-1) s}{\sigma} \underset{n \rightarrow \infty}{\xrightarrow{\mathrm{D}}} \chi^{2}(n-1) \tag{CLT}
\end{equation*}
$$

with $\chi^{2}(n-1)$ the Chi-square distribution with $n-1$ degrees of freedom
Then

$$
P(\sigma \in \underbrace{\left[\frac{(n-1) s}{q_{\chi^{2}}(\alpha / 2)}, \frac{(n-1) s}{q_{\chi^{2}}(1-\alpha / 2)}\right]}_{\text {asymptotic CI level } \alpha}) \underset{n \rightarrow \infty}{\rightarrow} 1-\alpha
$$

- Do not required to know the expected value

Asymptotic confidence interval for the variance

Calculation of a asymptotic confidence interval for the variance parameter σ^{2}

$$
\begin{equation*}
\frac{1}{\sigma} \frac{n-1}{n} \sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}=\frac{(n-1) s}{\sigma} \underset{n \rightarrow \infty}{\xrightarrow{\mathrm{D}}} \chi^{2}(n-1) \tag{CLT}
\end{equation*}
$$

with $\chi^{2}(n-1)$ the Chi-square distribution with $n-1$ degrees of freedom
Then

$$
P(\sigma \in \underbrace{\left[\frac{(n-1) s}{q_{\chi^{2}}(\alpha / 2)}, \frac{(n-1) s}{q_{\chi^{2}}(1-\alpha / 2)}\right]}_{\text {asymptotic CI level } \alpha}) \underset{n \rightarrow \infty}{\rightarrow} 1-\alpha
$$

- Do not required to know the expected value
- Asymmetric Cl since Chi-square distribution is asymmetric

Asymptotic confidence interval for linear regressions

$$
\text { Data }(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \quad \text { Linear model } y_{i}=a x_{i}+b+\varepsilon_{i}
$$

OLS estimates: $\tilde{a}=a+\frac{\sum_{i} x_{i} \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}_{n}\right)^{2}}$ and $\tilde{b}=b+\bar{x}_{n} \frac{\frac{1}{n} \sum_{i} x_{i} \varepsilon_{i}}{\sum\left(x_{i}-\bar{x}_{n}\right)^{2}}$
The statistics $\quad \frac{\tilde{a}-a}{s_{\tilde{a}}} \quad$ and $\quad \frac{\tilde{b}-b}{s_{\tilde{b}}}$
with $\quad s_{\tilde{a}}=\sqrt{\frac{1}{n} \sum_{i} \varepsilon_{i}^{2} / \sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}} \quad$ and $\quad s_{\tilde{b}}=\sqrt{\frac{1}{n} \sum_{i} \varepsilon_{i}^{2}\left(\frac{1}{n}+\frac{\bar{x}_{n}^{2}}{\sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}}\right)}$
have asymptotically a Student distribution t_{n-2} with $n-2$ degrees of freedom (CLT)

Asymptotic confidence interval for linear regressions

Data $(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \quad$ Linear model $y_{i}=a x_{i}+b+\varepsilon_{i}$
OLS estimates: $\tilde{a}=a+\frac{\sum_{i} x_{i} \varepsilon_{i}}{\sum\left(x_{i}-\bar{x} n\right)^{2}}$ and $\tilde{b}=b+\bar{x}_{n} \frac{\frac{1}{n} \sum_{i} x_{i} \varepsilon_{i}}{\sum\left(x_{i}-\overline{x_{n}}\right)^{2}}$
The statistics $\quad \frac{\tilde{a}-a}{s_{\tilde{a}}} \quad$ and $\quad \frac{\tilde{b}-b}{s_{\tilde{b}}}$ with $\quad s_{\tilde{a}}=\sqrt{\frac{1}{n} \sum_{i} \varepsilon_{i}^{2} / \sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}} \quad$ and $\quad s_{\tilde{b}}=\sqrt{\frac{1}{n} \sum_{i} \varepsilon_{i}^{2}\left(\frac{1}{n}+\frac{\bar{x}_{n}^{2}}{\sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}}\right)}$ have asymptotically a Student distribution t_{n-2} with $n-2$ degrees of freedom (CLT)
\rightarrow Therefore

$$
\tilde{a} \pm q_{t_{n-2}}(\alpha / 2) s_{\tilde{a}} \quad \text { and } \quad \tilde{b} \pm q_{t_{n-2}}(\alpha / 2) s_{\tilde{b}}
$$

are asymptotic confidence interval with confidence level $1-\alpha$ for respectively coefficients a and b of the linear regression

Confidence and prediction bands for linear regressions

Confidence band

```
R: predict(object,x,'confidence',level)
```

Interval of estimation with confidence level $1-\alpha$ for the mean at a given abscissa x^{\star}

$$
\tilde{a} x^{\star}+\tilde{b} \pm q_{t_{n-2}}(\alpha / 2) \tilde{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x^{\star}-\bar{x}_{n}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}}}
$$

Confidence and prediction bands for linear regressions

Confidence band

```
R: predict(object,x,'confidence',level)
```

Interval of estimation with confidence level $1-\alpha$ for the mean at a given abscissa x^{\star}

$$
\tilde{a} x^{\star}+\tilde{b} \pm q_{t_{n-2}}(\alpha / 2) \tilde{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x^{\star}-\bar{x}_{n}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}}}
$$

Prediction band

```
R: predict(object,x,'predict',level)
```

Interval of prediction of a new observation at x^{\star} with confidence level $1-\alpha$

$$
\tilde{a} x^{\star}+\tilde{b} \pm q_{t_{n-2}}(\alpha / 2) \tilde{\sigma} \sqrt{1+\frac{1}{n}+\frac{\left(x^{\star}-\bar{x}_{n}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}_{n}\right)^{2}}}
$$

Confidence and prediction bands for a linear regression

Confidence and prediction bands for a linear regression

Confidence and prediction bands for a linear regression

Confidence interval with R

Confident interval

Confident band
Prediction band
confint(object,level)
predict(object, x, 'confidence', level)
predict(object, x,'predict',level)

Generic function for any fitted model object
level is the confidence level
Default method assume asymptotic normal distribution for the residuals (asymptotic CI)

Example

```
object=lm(y~x)
confint(object,0.95)
predict(object,data.frame(1:100),interval='confidence',0.95)
```


Information criteria and test of hypothesis

Fit of the spacing with exponential distribution

Fit of the spacing with gamma distribution

Comparison of models

MLE and posterior PDF allow to find an optimal fit of the parameters
Cl allows to evaluate the precision of this fit
\rightarrow No indication on the quality of description of the data using the optimal fit
Cf example: Better fit of pedestrian spacing using gamma distribution than exponential

Comparison of models

MLE and posterior PDF allow to find an optimal fit of the parameters
Cl allows to evaluate the precision of this fit
$\rightarrow \quad$ No indication on the quality of description of the data using the optimal fit
Cf example: Better fit of pedestrian spacing using gamma distribution than exponential

Quality of a model evaluated by information criteria
Akaike Information Criterion (AIC) Bayesian Information Criterion (BIC)

$$
\mathrm{AIC}=2 k-2 \ln (L) \quad \mathrm{BIC}=k \ln (2 \pi n)-2 \ln (L)
$$

- Compromise between goodness of the fit through maximum likelihood L and the complexity of the model through the parameter number k
- Better model minimizes criteria

Information criteria for the fit of the spacing

Information criteria

Likelihood ratio and Bayes factor

The maximum likelihood ratio D is

$$
\mathrm{D}=\frac{\max _{\theta_{1}} L_{1}\left(\theta_{1}\right)}{\max _{\theta_{2}} L_{2}\left(\theta_{2}\right)}
$$

\rightarrow Better fit of the model 1 compared to model 2 if $D>1$ or $\log D>0$

Likelihood ratio and Bayes factor

The maximum likelihood ratio D is

$$
\mathrm{D}=\frac{\max _{\theta_{1}} L_{1}\left(\theta_{1}\right)}{\max _{\theta_{2}} L_{2}\left(\theta_{2}\right)}
$$

\rightarrow Better fit of the model 1 compared to model 2 if $D>1$ or $\log D>0$

The Bayes factor is the ratio of the mean likelihood over given prior f_{1} and f_{2}

$$
\mathrm{BF}=\frac{\int L_{1}(\theta) f_{1}(\theta) \mathrm{d} \theta}{\int L_{2}(\theta) f_{2}(\theta) \mathrm{d} \theta}
$$

\rightarrow Better fit of the model 1 when $B F>c$ or $\log B F>\log c$ (cf. Jeffreys interpretation)

Likelihood ratio and Bayes factor for the fit of the spacing

Gamma vs Exponential

Neyman Pearson statistical test

Test of a null hypothesis H_{0} against an alternative hypothesis on a sample of iid data
\rightarrow The goal is to test the validity of H_{0} (and not H_{1} - asymmetric approach)
\rightarrow In general, hypothesis are $\quad H_{0}:\left\{\theta \in \Theta_{0}\right\}$ vs $H_{1}:\left\{\theta \notin \Theta_{0}\right\}, \quad \Theta_{0} \in \mathbb{R}^{k}$

Neyman Pearson statistical test

Test of a null hypothesis H_{0} against an alternative hypothesis on a sample of iid data
\rightarrow The goal is to test the validity of H_{0} (and not H_{1} - asymmetric approach)
\rightarrow In general, hypothesis are $\quad H_{0}:\left\{\theta \in \Theta_{0}\right\} \quad$ vs $H_{1}:\left\{\theta \notin \Theta_{0}\right\}, \quad \Theta_{0} \in \mathbb{R}^{k}$
Four possible configurations:

Reality	H_{0} is true	H_{0} is false
Reject of H_{0}	Error1	OK
No reject of H_{0}	OK	Error2

- The probability of occurrence of Error1 is $\alpha \in(0,1) \quad$ Valid for any number of observations
- The probability of occurrence of Error2 tends to zero as $n \rightarrow \infty \quad$ Power of the test

Construction and usage of a test

A test is based on a statistic S for which the distribution
is known under H_{0} diverges under H_{1}

- Construction of a region of rejection R_{α} of H_{0}

$$
P_{H_{0}}\left(R_{\alpha}(S)\right)=P(\text { Error1 }) \leq \alpha
$$

- Binary response of a test for given α

Reject of H_{0} if $S \in R_{\alpha}$ No reject otherwise

Construction and usage of a test

A test is based on a statistic S for which the distribution
is known under H_{0} diverges under H_{1}

- Construction of a region of rejection R_{α} of H_{0}

$$
P_{H_{0}}\left(R_{\alpha}(S)\right)=P(\text { Error1 }) \leq \alpha
$$

- Binary response of a test for given α

Reject of H_{0} if $S \in R_{\alpha}$
No reject otherwise

The \mathbf{p}-value is the critical level α^{\star} such that

$$
\begin{array}{|ll}
\alpha>\alpha^{\star}: & \text { Reject of } H_{0} \\
\alpha<\alpha^{\star}: & \text { No Reject of } H_{0}
\end{array}
$$

α^{\star} is the probability to observe the value for S under $H_{0}-\mathrm{It}$ is not the probability of H_{0}

Construction and usage of a test

A test is based on a statistic S for which the distribution
is known under H_{0} diverges under H_{1}

- Construction of a region of rejection R_{α} of H_{0}

$$
P_{H_{0}}\left(R_{\alpha}(S)\right)=P(\text { Error1 }) \leq \alpha
$$

- Binary response of a test for given α

Reject of H_{0} if $S \in R_{\alpha}$
No reject otherwise

The \mathbf{p}-value is the critical level α^{\star} such that

$$
\begin{array}{ll}
\alpha>\alpha^{\star}: & \text { Reject of } H_{0} \\
\alpha<\alpha^{\star}: & \text { No Reject of } H_{0}
\end{array}
$$

α^{\star} is the probability to observe the value for S under H_{0} - It is not the probability of H_{0}

Reject of H_{0} if α^{\star} small (e.g. $\alpha^{\star}<0.01$) - No conclusion otherwise

Example of the machine

$\left(X_{1}, \ldots, X_{n}\right)$ is a iid sample of Bernoulli distribution with distribution $p=0.2$
$\rightarrow P\left(X_{i}=1\right)=p, P\left(X_{i}=0\right)=1-p, E\left(X_{i}\right)=p$ and $\operatorname{var}\left(X_{i}\right)=p(1-p)$
Test of assumptions
$H_{0}:\{p=0.2\} \quad$ VS $\quad H_{1}:\{p \neq 0.2\}$

Example of the machine

$\left(X_{1}, \ldots, X_{n}\right)$ is a iid sample of Bernoulli distribution with distribution $p=0.2$
$\rightarrow P\left(X_{i}=1\right)=p, P\left(X_{i}=0\right)=1-p, E\left(X_{i}\right)=p$ and $\operatorname{var}\left(X_{i}\right)=p(1-p)$
Test of assumptions

$$
H_{0}:\{p=0.2\} \quad \text { VS } \quad H_{1}:\{p \neq 0.2\}
$$

LLN and TCL gives

$$
S_{n}=\sqrt{n} \frac{\bar{X}_{n}-p}{\bar{X}_{n}\left(1-\bar{X}_{n}\right)} \rightarrow\left\{\begin{array}{l}
\mathcal{N}(0,1) \text { under } H_{0} \\
\pm \infty \text { under } H_{1}
\end{array} \quad \text { as } n \rightarrow \infty\right.
$$

Rejection region $\quad R_{\alpha}\left(S_{n}\right)=\left|S_{n}\right|>\xi_{\alpha}$ such that $\quad P_{H_{0}}\left(\left|S_{n}\right|>\xi_{\alpha}\right) \leq \alpha$

- $\xi_{\alpha}=-q_{\alpha / 2}$ i.e. $R_{\alpha}\left(S_{n}\right)=\left|S_{n}\right|>-q_{\alpha / 2}$ with q quantile of normal distribution
- P-value: $\quad \alpha^{\star}=P\left(\left|S_{n}\right|>s_{n}\right)=\left\{\begin{array}{l}0.5 \text { (in average) if } H_{0} \text { is true } \\ 0 \text { as } n \rightarrow \infty \text { if } H_{1} \text { is true }\end{array}\right.$

Example of the machine
$H_{0}:\{p=0.2\} \quad$ VS $H_{1}:\{p \neq 0.2\} \quad$ at level $\alpha=0.05$

Distribution of $\quad S=\sqrt{n} \frac{\bar{X}_{n}-p}{\bar{X}_{n}\left(1-\bar{X}_{n}\right)} \quad$ under $\quad H_{0}$

Example of the machine

```
H0:{p=0.2} VS }\mp@subsup{H}{1}{}:{p\not=0.2} at level \alpha=0.0
```

$$
p=0.2
$$

Number of observations

$$
p=0.4
$$

Some tests with R

Test for	Statistic	Distribution	R
Mean value $\left\{\mu=\mu_{0}\right\}$	$\sqrt{n} \frac{\bar{x}-\mu_{0}}{s_{x}}$	Student	t.test ($\mathrm{x}, \mathrm{mu} 0$)
Variance $\left\{\sigma=\sigma_{0}\right\}$	$(n-1) \frac{s_{x}^{2}}{\sigma_{0}^{2}}$	Chi-squared	-
Mean equality $\left\{\mu_{1}=\mu_{2}\right\}$	$\frac{\bar{x}-\bar{y}}{\left(s_{x}^{2} / n_{1}+s_{y}^{2} / n_{2}\right)^{1 / 2}}$	Student	t.test (x, y)
Variance equality $\left\{\sigma_{1}=\sigma_{2}\right\}$	$\begin{gathered} s_{x}^{2} / s_{y}^{2} \\ \text { (with } s_{x}<s_{y} \text {) } \end{gathered}$	Fisher	var.test (x, y)
Adequacy of discrete distribution	$\frac{\sum_{i}\left(E_{i}-O_{i}\right)^{2}}{E_{i}}$	Chi-squared	chisq.test (x, p)
Adequacy of continuous distribution	$\sup _{z}\left\|D_{x}(z)-D_{y}(z)\right\|$	Kolmogorov	ks.test (x, y)
Normality	$\frac{\left(\sum_{i} a_{i} x^{(i)}\right)^{2}}{n s_{x}^{2}}$	Shapiro-Wilk	shapiro.test (x)
Independence	$\frac{\sum_{i}\left(n E_{i, j}-E_{i} E_{j}\right)^{2}}{n E_{i} E_{j}}$	Chi-squared	chisq.test (x, y)

—Parametric clustering

Parametric clustering

Parametric clustering
 (density- or distribution-based clustering)

Assumption : Observations as mixture of identical models with different parameter values

Gaussian mixture model: Multivariate normal distribution

- Observables : Data x supposed to be iid observations of a multivariate normal distribution f
- Parameters : $\theta_{k}=\left(\mu_{k}, \sigma_{k}\right)$ of the Gaussian mixture and the proportions of observations per cluster $\pi_{k}, k=1, \ldots, K$
\rightarrow Log-likelihood:

$$
\mathcal{L}_{\theta}(x)=\sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_{k} f\left(x_{i}, \theta_{k}\right)\right)
$$

Parametric clustering (density- or distribution-based clustering)

Assumption : Observations as mixture of identical models with different parameter values

Gaussian mixture model:
 Multivariate normal distribution

- Observables : Data x supposed to be iid observations of a multivariate normal distribution f
- Parameters : $\theta_{k}=\left(\mu_{k}, \sigma_{k}\right)$ of the Gaussian mixture and the proportions of observations per cluster $\pi_{k}, k=1, \ldots, K$
\rightarrow Log-likelihood:

$$
\mathcal{L}_{\theta}(x)=\sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_{k} f\left(x_{i}, \theta_{k}\right)\right)
$$

Likelihood maximisation according to parameters

$$
\left(\mu_{k}, \sigma_{k}, \pi_{k}\right), k=1, \ldots, K
$$

1. Local optimum for fixed K through iterative algorithms
2. Selection of the cluster number K with information criteria

EM, Gipps sampling, VB, ...
AIC, BIC, likelihood ratio, ...

Gaussian mixture model with R: Mclust(data) Package: mclust

Mclust (data, modelNames) : Gaussian mixture for multivariate dataset fitted via
EM algorithm and BIC criterion

Mclust (data, modelNames): Gaussian mixture for multivariate dataset fitted via EM algorithm and BIC criterion

Several shapes for the cluster can be used
Option: modelNames

- EEV : Ellipsoidal, equal volume \& shape
- EII: Spherical, equal volume
- VEV : Ellipsoidal, equal shape
- VII : Spherical, varying volume
- EVV: Ellipsoidal, equal volume
- VVV : Ellipsoidal, varying volume \& shape

Observations

Mclust: Example 1
EII : Spherical, equal volume

Classification

Uncertainty

BIC criterion

log Density Contour Plot

Mclust: Example 1

VII : Spherical, varying volume

Classification

Uncertainty

BIC criterion

log Density Contour Plot

Observations

Mclust: Example 2

EVV : Ellipsoidal, equal volume

Classification

Uncertainty

BIC criterion

log Density Contour Plot

Mclust : Example 2
VEV : Ellipsoidal, equal shape

Classification

Uncertainty

BIC criterion

log Density Contour Plot

Mclust : Example 2
VVV : Ellipsoidal, varying volume \& shape

See also mixture of linear models here

Classification

Uncertainty

BIC criterion

log Density Contour Plot

Mclust : Example 3

Observations

Mclust : Example 3
VVV : Ellipsoidal, varying volume \& shape

Classification

Uncertainty

BIC criterion

log Density Contour Plot

Summary

Descriptive statistic allows to describe data without modelling assumptions
\rightarrow Exploration of the data Knowledge database discovery, data mining, big data
\rightarrow Elaboration of data-based models Senseless parameters

Parametric statistic allows to obtain precise assessments on statistical models
\rightarrow Level of information, confidence interval, test of hypothesis or significance
\rightarrow Assumptions on the distribution of the data Meaningful parameters

Summary

Descriptive statistic allows to describe data without modelling assumptions
\rightarrow Exploration of the data Knowledge database discovery, data mining, big data
\rightarrow Elaboration of data-based models Senseless parameters

Parametric statistic allows to obtain precise assessments on statistical models
\rightarrow Level of information, confidence interval, test of hypothesis or significance
\rightarrow Assumptions on the distribution of the data Meaningful parameters
\mathbf{R} and its numerous packages and help forums is a useful software for both descriptive and parametric data analysis

References and links

Books

- T.W. Anderson \& J.D. Finn The statistical analysis of data Springer 1996
- D. Montgomery \& G. Runger Applied Statistics and Probability for Engineers Wiley 2010
- P. Congdon Bayesian statistical modelling (2nd edition) Wiley 2006

Websites

- The R project for statistical computing
- Wikipedia : Statistics
- Online courses
r-project.org wikipedia.org/Statistics
statistics.com
- Python \& R codes for common machine learning algorithms analyticsvidhya.com

Videos

- R vs Python
blog.dominodatalab.com
- R statistics tutorials
youtube.com

Integrated development environments for \mathbf{R}

- RStudio, Jupyter, Rattle, Red-R, R Commander, JGR, RKWard, Deducer, ...

Abbreviations

PDF	Probability density function
ECDF	Empirical cumulative distribution function
iff	If and only if
th.	Theorem
ind.	Independent
iid	Independent and identically distributed
OLS	Ordinary least squares
PCA	Principal component analysis
Ic	Linear combination
D	Distribution
P	Probability
a.s.	Almost surely
LLN	Law of large numbers
CLT	Central limit theorem
MSE	Mean squared error
MLE	Maximum likelihood estimator

Overview

\section*{| Part 1 | Descriptive statistics for univariate and bivariate data |
| :--- | :--- |
 Repartition of the data (histogram, kernel density, empirical cumulative distribution function), order statistic and quantile, statistics for location and variability, boxplot, scatter plot, covariance and correlation, QQplot
 | Part 2 | Descriptive statistics for multivariate data |
| :--- | :--- |
 Least squares and linear and non-linear regression models, principal component analysis, principal component regression, clustering methods (K-means, hierarchical, density-based), linear discriminant analysis, bootstrap technique
 | Part 3 | Parametric statistic |
| :--- | :--- |
 Likelihood, estimator definition and main properties (bias, convergence), punctual estimate (maximum likelihood estimation, Bayesian estimation), confidence and credible intervals, information criteria, test of hypothesis, parametric clustering}

Appendix ${ }^{A T} T_{E} X$ plots with R and Tikz

Appendix 1 : Plotting with R

R is not only a software for data analysis and mathematical modelling, it is also a software to get graphics ${ }^{3}$
\rightarrow Basically R allows to produce figures in Metafile, Postscript, PDF, Png, Bmg, TIFF, jpg
$\rightarrow \quad$ tikzDevice package allows to get LATEX file (.tex)

Simple plot

- Options
- Legends
- Specification of the axis label

```
                                    plot(x,y)
    xlab, ylab, main, ...
legend('topright', ...)
    axis(1, ...)
```


Multiplot

- Figures with 2 lines of 3 plots
- Customized position of the plots
- Scatterplot of a database

```
    par(mfrow=c(2,3));plot()...
split.screen(rbind(...));screen(1)
plot(data_base)
```

[^2]
ATEX plot with R

Script

```
require(tikzDevice)
tikz('exemple.tex',width=5,height=3, standAlone=T)
curve(sin(x)/x,xlim=c (0,20),xlab='$x$',ylab='$f(x)$',lwd=7, col=rgb(.5,.5,.5))
legend('topright',c('$f(x)=\\frac1x\\sin(x)$'),lwd=7,col=rgb(.5,.5,.5))
dev.off()
```


Example of a $A T_{E} X$ plot with R

[^0]: ${ }^{1}$ 1993, GNU General Public License, r-project.org

[^1]: ${ }^{2}$ We have more generally for $x_{i}>0$ and $\bar{X}_{m}=m \sqrt[-1]{\frac{1}{N} \sum_{i} x_{i}^{m}} \quad \bar{X}_{m} \leq \bar{X}_{m}$, for all $m \leq m^{\prime}$

[^2]: ${ }^{3}$ See demo(graphics), package 'ggplot2', CRAN Task View, Google image : R graphics

